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ABSTRACT
Have you ever been in a sauna? If yes, according to our recent survey
conducted on Amazon Mechanical Turk, people who go to saunas
are more likely to know that Mike Stonebraker is not a character in
“The Simpsons”. While this result clearly makes no sense, recently
proposed tools to automatically suggest visualizations, correlations,
or perform visual data exploration, significantly increase the chance
that a user makes a false discovery like this one. In this paper, we
first show how current tools mislead users to consider random fluc-
tuations as significant discoveries. We then describe our vision and
early results for QUDE, a new system for automatically controlling
the various risk factors during the data exploration process.

1. INTRODUCTION
“A new study shows that drinking a glass of wine is just as good

as spending an hour at the gym” [Fox News, 02/15]. “A new study
shows how sugar might fuel the growth of cancer” [Today, 01/16].
“A new study shows late night snacking could damage the part of
your brain that creates and stores memories” [Fox News, 05/16].

Over the last years we have seen an explosion of data-driven
discoveries like the ones mentioned above. While several of these
are indeed legit, there has also been an increase of more and more
questionable findings [19]. Albeit the reasons behind this trend
are manifold, we recently observed that the research community
started to develop tools, like Vizdom/IDEA [7], SeeDB [34] or Data
Polygamy [5], that are likely to considerably increase the number
of false discoveries from data analysis. For instance, visual data ex-
ploration tools, such as Vizdom/IDEA [7] or Tableau, significantly
simplify data exploration for domain experts and, more importantly,
novice users. These tools allow to discover complex correlations
and to test hypotheses and differences between various populations
in an entirely visual manner with just a few clicks, unfortunately,
often ignoring even the most basic statistical rules. For example,
in a recent user study that we performed, we have asked people
to explore a dataset containing information about different wines
and report their findings. Using histograms showing American vs.
French wines, most subjects came to the conclusion, that French
wines earn higher critic ratings on average. At the same time, almost
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none of the participants used a statistical method to test if the visu-
ally observed difference from the histogram is actually meaningful.
Similar, none of the participants, even the more statistically savvy
ones, did consider that the arbitrary exploration and attempts to
find interesting facts actually increases their chance to find random
occurrences of seemingly significant correlations.

While these concerns are often waived under arguments such
as “scientists are in desperate need for better tools, so any help is
better than none”, it is often not recognized that these tools not
only greatly increase the likelihood of spurious discoveries but in
many cases, make it also impossible to control the number of false
discoveries later on. For example, recent visual recommendation
systems, such as SeeDB [34] or Data Polygamy [5], are potentially
checking thousands of hypotheses in just a few seconds and are
smoking guns hiding as water pistols. SeeDB tries for example to
find interesting visualizations and while a visualization per se does
not seem like a hypothesis test, it should be treated as one. Why
otherwise should a visualization be considered interesting, if the
effect shown by the visualization is not relevant?

As a result, by testing thousands of visualizations it is almost
guaranteed that the system will find something “interesting” regard-
less of whether the observed phenomenon is actually statistically
relevant or not. Similar, Data Polygamy tries to find interesting
correlations between time series data. Hypothesis tests are therefore
actually performed using MC-methods relying on a fixed thresh-
old for the p-values, without providing a correction for multiple
hypotheses. Even more astonishingly, while the authors do discuss
p-value adjustments using the Bonferroni correction, they then –
surprisingly – disregard it. Let us assume the system has to test 100
potential correlations, 10 of them being true. Assuming a p-value of
0.05 (as suggested in [5]), and that our test has a statistical power of
0.8 (common values for a single statistical test), Data Polygamy on
average will find 13 correlations of which 5 (≈ 40%) are “bogus”
(i.e., they are false positives). Even worse, without knowing how
exactly the system tried to find the “interesting” correlations and
how many correlations it tested, it is later on impossible for the user
to determine what the expected false discovery rate will be across
the whole data exploration session.

In this paper, we outline our vision and initial results for QUDE,
the first system to Quantifying the Uncertainty in Data Explo-
ration, which is part of Brown’s Interactive Data Exploration Stack
(BIDES). In order to better quantify the severity of the problem, we
analyze existing visual recommendation systems, namely SeeDB
and Data Polygamy, and discuss how they are prone to find wrong
insights using simulated and real-world data. We further quantify
the risk for data exploration systems like Vizdom/IDEA, which is
not as severe as for automatic insight finders, but still persists be-
cause of its capability to quickly test many different hypotheses.
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(b) Uninteresting visualization
Figure 1: Examples of interestingness as defined in [34].

Afterwards, we discuss QUDE and how it achieves a more sustain-
able data discovery process based on techniques for controlling the
False Discovery Rate (FDR) [2]. Furthermore, we also show how
QUDE tries to automatically infer the tested hypotheses based on
the user interactions, and how we plan to incorporate user feedback,
as well as, warn the user about potential risk factors. While QUDE
is designed mainly to avoid the risk of multi-hypothesis testing, it
also includes techniques to tackle other risk factors such as missing
data or visually misleading results (e.g., Simpson paradox).

Our main contribution is twofold: first, we demonstrate the risk
of false discoveries by using three example systems, Vizdom/IDEA
[8, 7], SeeDB [34], and Data Polygamy [5] (Section 2). However,
the insights gained from these systems apply to a large range of
commercial (e.g. [16]) and research prototypes (e.g. [34]). Secondly,
in Section 3, we present our vision of QUDE and initial techniques
we use to control the amount of false discoveries.

2. THE RISK WITH TODAY’S TOOLS
Modern tools for interactive data exploration enable domain ex-

perts and novice users alike to efficiently analyze large amounts of
data. At the same time, if not used carefully, these tools can sig-
nificantly increase the risk of making spurious discoveries. In this
section, we analyze different tools for data exploration and discuss
how these tools amplify the risk of false discoveries. Later, in Sec-
tion 3, we present techniques based on a statistical concept called
“False Discovery Rate” (FDR) and how we adopt these techniques
for data exploration to control the risk factors.

2.1 Visual Data Exploration
Visualizations are arguably the most important tool to explore,

understand and find insights in data. As part of interactive data
exploration, visualizations are used to skim through the data and
look for interesting patterns. It comes therefore at no surprise that
the database research community over the last few years focused on
developing techniques (e.g., adaptive indexing, approximate query
processing) to better support interactive exploratory workloads [17].
Visualization systems such as Vizdom [7] are capable of visualizing
large-scale data with interactive speed. While interactivity is key
to the usability of advanced analytical tools [25], using them un-
fortunately also significantly increases the risk of making spurious
discoveries. Such risk has two aspects:

(1) The statistical significance of the visualized results is unclear.
(2) The growing number of hypotheses being tested during explo-

ration increases with every single visualization.

The first aspect of risk is important because visualizations have
the power to influence human perception and understanding by the
rich information they may carry. Suppose that a salesperson of an
ice cream company is exploring a data set about the sales. As the
first step, she wants to get a yearly distribution of the sales figures.
So she compares the sales of the last five years using a histogram
of sales per year. In the second step, she is interested in learning

if the the sales differ significantly across different states. She thus
compares sales per state over the last five years.

Suppose the histogram shows that sales in Vermont were higher
than in Rhode Island. Consider how tempting it is for an unsophis-
ticated user to conclude that Vermonters buy more ice cream just
based on the visualization. Although a statistically inclined user
would formally analyze this observation by using hypothesis testing,
she would have to redirect her attention to work with a different
statistical tool (e.g. R [12]) before proceeding to the next data ex-
ploration step. After such efforts on context-switching, the insight
might turn out completely due to random noise. At scale, the divi-
sion of labor between data exploration and hypothesis testing will
cause even more waste of human efforts on such spurious insights.
Thus, if a visualization provides any insight, the insights should
be immediately tested for their significance. If that would not be
the case, the value of the visualization would be very limited as
the user would not be allowed to make any conclusions based on
the visualization. Thus if we consider a visualization as something
more than a pretty picture presented to the user (i.e., more than just
a listing of facts), we should always test the insight the user gains
from the visualization for its significance and inform the user about
it. A central challenge is of our work is the understanding of the
hypothesis derived by the user given a certain data visualization.
With respect to the previous example, the hypothesis derived by
the user could be: (1) Vermonters buy more ice cream than Rhode
Islanders, (2) Rhode Islanders buy more than Vermonters, or (3)
they buy ice cream in the same amount.

The second aspect of risk is arguably even more severe. With
every additional hypothesis test the chance of finding a false discov-
ery increases. This problem is known as the “multiple comparisons
problem” and has been studied extensively in the statistics litera-
ture [3, 1, 15, 23]. While only a decade ago it was an art left to
experts, data analytics has become more and more accessible to a
broader range of users with the advent of open-source data analysis
systems. What has clearly changed is how easy it has become to test
an hypothesis. For instance, if ten years ago it took a scientist one
day to do a single test (including determining the right test statistic,
collecting and cleaning data, etc.), it is now very easy to do 20 or
more in a few minutes on a system such as Vizdom [7]. Assuming a
significance level of 5%, for 20 tests the risk to falsely reject at least
one true null hypothesis increases to 1− (1− 0.05)20 = 64%.

Data exploration on systems such as Vizdom [7] not only increase
the risk of false discovery, but also change the way how statistical
tests are applied. Suppose in the previous example the salesperson
explores various relationships in the sales dataset through visual-
izations until she sees a visualization that she deems useful (e.g.
significantly more ice cream sales to males in Massachusetts com-
pared to California). With some statistics background, she validates
this insight by using an appropriate test with a significance level of
5%. Suppose the observed p-value is below the significance level,
she rejects the null hypothesis and believes that there is only a 5%
chance that she incorrectly rejected the null hypothesis in case it
was true. However, this way of applying statistical test is wrong.
What the user ignores is that before she did the test she had already
searched through the dataset for a while, and had observed differ-
ent insights and implicitly their corresponding hypotheses, albeit
untested. Thus, by the time the user applied the statistical test, she
was already inadvertently trapped into the multiple comparisons
problem, because the data exploration tool provided her the illusion
that data exploration was not a sequence of hypotheses.

To conclude, without considering the risk of false discoveries,
current interactive data exploration tools have the propensity to
significantly exacerbate the problem of considering random occur-
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Figure 2: The risk analysis of false discoveries in SeeDB [34]

rences as insights. Rather than limiting data exploration exclusively
to statisticians, we believe in empowering both unsophisticated and
advanced users with more intelligent systems with automatic risk
control, where data-driven insights can be drawn both efficiently and
safely. While it is clearly not the tool’s fault that false discoveries
happen, in the end it is the user’s, tools like Vizdom, Tableau and
many others purposefully target a broader audience of users. That
is, more users without a sufficient statistic background will be using
these tools and not understand the risk factors. Furthermore, even
trained statisticians struggle to fully control the multi-hypothesis
problem, which in theory requires keep track of every single insight
every user ever made over a given dataset.

Therefore, with QUDE we plan to build a system which actively
makes the user aware of these problems during the data exploration
process and controls the risk of false discoveries automatically.
Unfortunately, traditional techniques for multi-hypothesis testing,
such as the Bonferroni correction, are both too pessimistic and
require the system to know the number of hypotheses the user can
explore upfront, which make them inadequate for data exploration.

2.2 Visual Recommendations
To automate data-driven discoveries at scale, visualization recom-

mender systems such as Scagnostics [27], SeeDB [34], VizDeck [21],
or Voyager [36] have been proposed. None of them however consid-
ers the risk of false discovery.

In a nutshell, visualization recommendation systems automate
two dimensions of the visual data exploration process: (1) Recom-
mend new visualizations with the goal to provide new insights (2)
provide better representations for a given visualization. We focus
on the first type of recommendation systems as they are similar to
the systems discussed in Section 2.1, except for the fact that the
system itself becomes the explorer of the data and is capable of
checking thousands of hypotheses in just a few seconds. Without
controlling the risk of false discoveries, these systems systematically
increase the risk of spurious discoveries at scale. For the remainder
of the discussion we use SeeDB [34] as an example, though similar
observations can be made for other systems.

SeeDB considers the current query and according visualization
of the user (i.e., the reference query) and offers recommendation
(i.e., the target query) by adding/changing filtering and group-by
attributes etc. To rank the recommendations, SeeDB recommends to
the user the most interesting target queries based on the deviations
from the given reference query. SeeDB assumes a larger deviation
indicates a more interesting target query. Figure 1a and Figure 1b
show examples of “interesting” and “uninteresting” target views.
Furthermore, SeeDB truncates uninteresting visualizations if the
deviation value is below a certain threshold.

Unfortunately, the deviation in SeeDB may just result from ran-
dom noise, and thus carries no statistical significance. In [34], the
authors report that the discovery rate for interesting visualizations
with SeeDB is three times higher than for manual exploration tools
such as Tableau [16] or Vizdom [7]. This increase of efficiency is
troubling because the false discoveries also increase in an uncon-
trolled manner.
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(c) Recommended View 2
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Figure 3: An example of SeeDB [34] on survey data.

2.2.1 False Discoveries on Random Data
As a first step to show how visual recommendation systems such

as SeeDB [34] suffer from false discoveries, we use a probabilistic
model to analyze how likely it is that SeeDB finds a large deviation
from the reference view on random data without any real correla-
tions. We focus on SeeDB’s capability of adding and changing a
single filtering condition to the reference query. We ignore more ad-
vanced variations (e.g. multiple filter conditions, adding group-by’s,
etc.), as all of these would further increase the chance of false discov-
eries. For simplicity our model makes the following assumptions:
(a) the aggregate function is SUM, the aggregate column has zero
variance and the group-by column has uniformly distributed binary
values; (b) the filter column is a sequence of Bernoulli trials; (c) the
selectivity of attribute values on the filter column is drawn from a
multinomial distribution; (d) all columns are independent; (e) we
used the same deviation distance as in [34] for the recommendation
threshold.

Figure 2 shows the risk of the SeeDB model making recommenda-
tions based on the random effects. The first simulation in Figure 2a
varies the number of unique values in the filtering attribute (called
filter cardinality), which corresponds to the number of target queries
per reference query. The support size (i.e., number of selected tu-
ples) of each target query is kept constant at 100. Given higher filter
cardinality, more target queries are compared against the reference
query, and thus the risk of false discovery increases. The second
simulation in Figure 2b uses 1000 records, keeps the filter cardi-
nality constant at 6 but varies the selectivity of the predicate and
with it the support size. The figure shows — not surprisingly — that
the lower the selectivity, the higher the chance of a false discovery
because of the reduced support size.

2.2.2 False Discoveries on Survey Data
As a second step to verify what spurious recommendations SeeDB

would make, we collected 104 answers for 69 (mostly unrelated)
multiple-choice and 17 fill-in-the-blank questions on Amazon Me-
chanical Turk [18]. Questions range from Who is Mike Stonebraker?
to What is your eye color? and Have you ever been in a Sauna?.
Each answer is treated as an attribute.

We implemented the SeeDB recommendation algorithm, and
used simple queries with one aggregated and one group-by attribute
but without any filtering condition as the reference views. The
deviation threshold was set according to the example in [34]’s Fig-
ure 1. As a result, our SeeDB implementation generated 2, 078, 608
target views (i.e., potential recommendations) based on 9, 996 refer-
ence views, among which a stunning 708, 109 were recommended,
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Figure 4: Data Polygamy [5] on random extreme points.

though many of which are statistically insignificant.
Figures 3a-3d show example spurious recommendations. Suppose

the user analyzes the preference of Potato Chips (Cheddar vs. Sour
Cream) based on the Workspace Preference using the reference view
in Figure 3a, which is already a questionable finding on its own.
Still SeeDB recommends three of the top-ranked target views shown
in Figure 3b-3d (ranked by the deviation beyond the threshold as
in [34]’s example), which are even more questionable and do not
hold up in our statistical test. For instance, the recommendation
in Figure 3c shows that the disbelief in aliens reverts the trend
compared to the reference view, though the correlation between
disbelief in aliens and preference of potato chips is insignificant
(p-value of 0.59). On the other hand, SeeDB also recommends
views based on statistically significant yet questionable correlations,
such as the correlation between Saunas and Stonebraker from the
abstract, which even passes our post mortem statistical test (p-value
of 0.036). Thus, even if the user would perform a statistical test
after seeing the visualization, she might wrongly assume that the
insight is significant as she would certainly never consider the risk
the visualization recommendation system introduced by searching
for an “interesting” visualization.

2.3 Automatic Correlation Finders
As a last class of system, we analyze recent recommendation

engines, which not just suggest visualizations but try to automat-
ically find insights through automatic hypothesis testing. One of
such systems is Data Polygamy [5], which searches for statistically
significant correlations in temporal-spatial datasets. Such correla-
tions may exist at certain time or location. For example, the wind
speed may not correlate with the number of taxi trips during the
year, but it may when the hurricane strikes. Data Polygamy first
identifies extreme data points, then uses the F1 score to measure the
relationship strength, and performs Monte Carlo permutation test to
determine the statistical significance given a predefined significance
level [5].

Unfortunately, Data Polygamy ignores the problem of multiple
comparisons and therefore its method is only sensible for a single
compared relationship. Suppose there are two datasets of 5 attributes
each, resulting in 25 pairwise relationships to test. With a signifi-
cance level of 0.05, on average at least about one such relationships
would pass the significance criteria even on random input. However,
data variety, on the other hand, is increasing quickly. The NYC
Urban data collection has 228 features on weather monitoring, and
over 1,300 data sets in the span of two years have been collected
by the government agencies in NYC [5] [13]. Thus recommenda-
tion systems without controlling for multiple comparisons are not
suitable for real-world datasets.

We downloaded the code of Data Polygamy and studied the num-
ber of false discoveries over random data with randomly introduced
extreme data points, as summarized in Figure 4. Each extreme data
point was sampled independently with 20% probability from a dis-
tinct uniform distribution than the normal data. With 100 records
and 11 attributes per dataset, Data Polygamy found a total of 43
“bogus” relationships in 50 independent trials. Thus, without consid-
ering the risk of multiple comparisons, Data “Polygamy can be bad
for you”; it is literally an automatic p-hacking system.

2.4 Automatic Model Finding
Finally, systems for automatic model building and tuning in data

mining or machine learning (e.g. MLBase [24]) are also victim of
the risk of multiple comparisons. To demonstrate the complexity of
this problem, suppose that we evaluate a sequence of 20 possible
modelsM1,M2, . . . ,M20 for our observed data. We test each
model using cross validation on different holdout sets, and accept a
model if its estimation (prediction) error satisfies our requirement
with significance level ≤ 0.05 (i.e., the probability that the model
achieved that smaller level of estimation error on a random data is
bounded by 0.05). However, this also implies that at least one such
model on average would pass our criteria even on random data.

3. QUDE: A SYSTEM TO QUANTIFY THE
UNCERTAINTY IN DATA EXPLORATION

As discussed in the previous section, the multi-hypothesis pitfall
is a core problem affecting many recent systems for interactive
data exploration, recommendations for visualizations and insights,
as well as, automatic model building. With QUDE (pronounced
“cute”) we are building the first system to automatically Quantify
the Uncertainty in Data Exploration. QUDE is part of Brown’s
Interactive Data Exploration Stack (BIDES) and consist of a risk
assessment engine as well as a user facing component integrated into
Vizdom, BIDES’ user interface. While the main focus of QUDE is
on the control of the risk of false discoveries due to the testing of
multiple hypotheses, QUDE will also be able to detect other risk
factors as explained at the end of this section.

3.1 Controlling the Exploration Risk
When a user is exploring a larger number of hypotheses based

on the data, either explicitly, indirectly through visualizations, or
automatically through recommendation engines, there is a growing
risk of flagging a random (i.e., non “statistically significant”) fluc-
tuation in the data as a significant discovery. Any sustainable data
exploration system should therefore effectively control the risk of
such “false discoveries”.

3.1.1 Multi-Hypothesis Evaluation
The risk of false discovery is known as the problem of multiple

comparisons, or multi-hypothesis evaluation Two main fundamental
challenges arise when attempting to automatically quantify the risk:
(1) the traditional techniques do either not scale well with the number
of hypothesis or can not be used in an interactive environment and
(2) in many cases it is not clear which hypothesis is currently being
tested through a visualization by the user (i.e., the “user intent”).
In the following, we describe various multiple-hypothesis control
techniques and how well they work to address the first challenge,
whereas in Section 3.1.2 we discuss how we plan to address the user
intent challenge.

Family Wise Error Rate (FWER): Traditionally, frequentist
methods for multiple hypothesis testing focus on correcting for
modest numbers of comparisons. A natural generalization of the
significance level to multi-hypothesis testing is the Family Wise
Error Rate (FWER), which is the probability of incurring at least
one Type I error (i.e., false positive: the null hypothesis is true, but is
rejected) in any of the individual tests. The Bonferroni correction [3]
was proposed to control FWER for m hypothesis tests at an upper
bound α. The Bonferroni correction tests each null hypothesis with
significance level α/m. However, this method is too conservative
in that the power of the test is too low (i.e., the accepted significance
level becomes extremely small) when m is large, resulting in many
false negatives. Several methods have been proposed to improve the
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Figure 5: Storyboard of how a “risk controller” could look like.

average power of the Bonferroni method for small to modest m; but
for large number of hypotheses, all of these techniques lead to tests
with low power. A review of these techniques is given in [32].

False Discovery Rate (FDR): The False Discovery Rate (FDR)
was introduced by Benjamini and Hochberg [1] as an alternative
and less conservative approach to control errors in multiple hypoth-
esis tests. Let V be the number of Type I errors in the individual
tests, and let R be the total number of null hypotheses rejected
by the multiple test. FDR is defined as the expected ratio of er-
roneous rejections among all rejections, namely FDR = E[V/R],
with V/R = 0 when R = 0. Designing a statistical test that con-
trols FDR is not simple as the FDR is a function of two random
variables that depend both on the set of null hypotheses and the set
of alternative hypotheses. Building on the work in [1], Benjamini
and Yekutieli [2] developed a general technique for controlling the
FDR in multi-hypothesis tests. Furthermore, for entirely random
data, FDR controls the same error rate as FWER. That is, FDR and
FWER result in the same expected number of mistakes over random
data. This property makes FDR easy to explain to users (though,
admittedly understanding the differences between FWER and FDR
is harder in the presence of real correlations). Most importantly,
recent work by Foster and Stine [11] allow to incrementally run the
hypothesis tests and thus provide a starting point for controlling the
risk in interactive data exploration.

Uniform Convergence and (Structural) Risk Minimization:
The uniform convergence paradigm is often used to control the risk
in model selection (i.e., machine learning) and is a great candidate
technique to control the risk for automatic recommendations (e.g.,
visualizations as in SeeDB or correlations as in Data Polygamy) and
model tuning (e.g., as in MLBase). In this approach the complexity
of the predefined class of all possible hypotheses under consider-
ation is analyzed, and based on this complexity it is possible to
compute an upper bound to the sample size that is sufficiently large
to simultaneously evaluate the expected error of all hypotheses in
the class. The approach was first proposed by [33] as the theoretical
foundation for statistical learning, but it has been shown to provide
practical solutions to some important data analysis problems [29,
30, 31]. The method of structural risk minimization prioritizes less
complex models by assigning weights to different hypothesis classes
(model) corresponding to the user’s preferences. We say that a set of
functions has the uniform convergence property if we can use one fi-
nite sample to estimate the expectation of all the functions in the set,
with a uniform bound on the gap between the empirical mean and
the true expectation that hold simultaneously over all the functions
in the set. Formally, a set of functions F has the uniform conver-
gence property with respect to a domain Z if there is a function
m(ε, δ) such that for any ε, δ > 0, m(ε, δ) <∞, and for any distri-
bution D on Z, a sample z1, . . . , zm of size m = m(ε, δ), drawn
independently & identically distributed (i.i.d.) from D satisfies

Pr(sup
f∈F
| 1
m

m∑
i=1

f(zi)− ED[f ]| ≤ ε) ≥ 1− δ.

Other Approaches: An alternative to the previous methods is

a hold-out dataset, i.e., randomly dividing the dataset into an ex-
ploration D1 and a validation D2 dataset [37]. While a feasible
approach for very large datasets, it can be shown that this approach
significantly lowers the power (i.e., the chance of finding a real
insight) especially for smaller datasets or subsets of the data. For
example, if the user tries to find what distinguishes her top 100
customers from the rest, this method leads to significantly more
false negatives. Permutation tests [14] can also be used to achieve
similar control for multi-hypothesis testing. While well suited for
small datasets, permutation tests on large datasets are usually too
computationally intensive to be executed interactively.

3.1.2 Automatic Risk Control in QUDE
Our goal is to provide the user with accurate risk estimates for

different types of interactions in data exploration. Our work as in
QUDE is built upon the line of research on efficient FDR bounds
for massive data explorations and the application of uniform conver-
gence [23, 29, 30]. The core idea of QUDE is to assume a standard
null hypothesis for any exploration the user performs, while allowing
the user to customize the null hypothesis with her domain-specific
prior knowledge. We are therefore currently developing a heuristic
based on our user study to determine the intention of the user. For
example, when the user observes that there are an equal number
of men and women in the database, but the distribution of men
and women is unbalanced when considering only individuals with
income over 50k, QUDE assumes the user executes a test to evalu-
ate the significance of this difference. At the same time, QUDE’s
interface presents this standard hypothesis to the user and allows
to overwrite the null hypothesis, if the user chooses to adjust the
null hypothesis. Our assumption is that it is not crucial to be always
correct with the default hypothesis, but rather that the default hypoth-
esis is used to actively make the user aware that the insight he might
have gotten should be tested for significance and to actively seek
the user’s feedback. Then, as the user continues exploring the data
set, the system continuously calculates the risk of false discovery
based on the FDR method. If a shown difference is not significant,
the user is automatically warned about it. Furthermore, if the user
trains a model or uses a visualization recommendation, we apply
the same principle by providing an upper bound on the expected
number of false recommendations using Uniform Convergence and
(Structural) Risk Minimization.

While with our current QUDE we are already able to quantify
the risk factors for simple workflows, we also discovered several
challenges which we still need to address. Most importantly, for
each interaction we need to identify the appropriate null hypothe-
sis to compute the corresponding p-value. Besides using a default
hypothesis and allowing the user to overwrite it, we plan to explore
alternative approaches such as (1) asking the user what informa-
tion she is looking for; (2) learning from past action of users on
similar data; and (3) apply a precalculated upper bound on the num-
ber of different hypothesis answered by a given chart (otherwise a
histogram with 20 bars would create over 190 tests).



Similarly, we found that current FDR methods are still not well
suited for the iterative process of data exploration. The standard
FDR control methods evaluate all the null hypothesis and select a
subset to reject. In the iterative process instead we want a stopping
criteria that depends only on the actual hypothesis evaluated by the
user. There has been some preliminary work towards this direction
[15, 11]. Our work builds upon [11] to provide incremental and
interactive risk control of data exploration.

A last challenge is to identify classes of hypothesis (e.g., for
recommending certain visualization) for which we can compute
practical and efficient bounds on their sample complexity using
structural risk techniques, as in our recent work [29, 30, 31] for
controlling the risk in frequent itemsets mining. The idea is to group
sets of primitive hypothesis into classes, and evaluate the total error
with respect of the number of different classes used by the users.

3.1.3 QUDE User Interface
Integrating the user feedback in the data exploration process is a

key factor towards avoiding false discoveries: (1) the system needs
to understand the user intents to better quantify the risk and (2) the
system needs to adequately warn the user about potential risk factors
so that the user understands the risk of her actions. The core idea of
our approach is to use an automatically derived default null hypothe-
sis in order to obtain user feedback and (potentially) as a pessimistic
lower bound. Figure 5 shows a storyboard of QUDE’s way to to con-
vey the risk factors to the users. In this example, (A) Eve drags out
a histogram and the system immediately displays a“risk controller”
on the left-hand side where the results of a default hypothesis test for
this histogram are displayed: rejected null hypotheses highlighted
in green, accepted null hypotheses highlighted in red. It confirms
what Eve intuitively observed from the visualization: there seems
to be a significant difference between the number of female and
male patients in this dataset. (1) Tapping on this default hypothesis
allows Eve to manual adjust and correct what’s being tested (e.g.,
she might want to change from two-sided to one-sided). (2) Eve can
also use the “risk” slider to change the amount of false discoveries
she is willing to accept. (B) Eve adds more histograms and connects
them to the previous one and the system again automatically runs
the appropriate hypothesis tests. Again this confirms what Eve sees
visually, the chances of having a blood disease does not seem to be
dependent on the gender of a person. (C) Afterwards, Eve decides
to build a classifier that predicts if someone has a blood disease.
Our system’s risk controller automatically adds an entry in the risk
list, which allows Eve to define a false discovery rate budget for
the model search and which is then, for example, controlled with
the structural risk minimization technique. Furthermore, Eve can
see the p-values of the top 3 models as well as the distribution of
p-values for all models that have been tested.

3.2 Detecting Common Statistical Pitfalls
While our main goal of QUDE is to control the multiple hypoth-

esis error, we are also planning to implement tools to detect other
common statistical errors/mistakes. In the following, we discuss
some of these pitfalls and initial ideas of how to make users aware
of them.

3.2.1 Simpson’s Paradox
A well-known phenomenon in statistics is the Simpson’s Para-

dox [22] in which a trend reverts when splitting a data set into
multiple subgroups. One of the most famous examples is the gender
bias among graduate school admissions to University of Califor-
nia, Berkeley. The overall admission figures of 1973 showed that
men were more likely to be admitted than women. However, when
looking at the largest departments the trend actually reverted for the
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Figure 6: Storyboard of a Simpson’s Paradox Warning

majority of departments.
For QUDE, we therefore integrated algorithms that detect a Simp-

son’s Paradox online as the user explores a data set. Figure 6 shows
a storyboard of how a exploration session of QUDE looks like: Eve
already has filtered down her dataset to look at patients from a par-
ticular demographic and with certain types of blood testing result
values. Eve is now interested to see percentages of such patients
that have blood diseases grouped by age groups (kids and adults).
From looking at the histogram in (A) it seems like kids are more
prone for these types of diseases. Afterwards, Eve however notices
that the system displays a warning (yellow box). (B) By dragging
out the warning, the system presents a set of visualizations showing
that when accounting for the lurking variable “digestive disease” the
trend reverses (i.e., kids are less prone for blood diseases for both,
with digestive diseases and without).

Testing a dataset for the Simpson’s Paradox is quite challenging
as it requires to test many different attribute combinations while
controlling the risk of finding a Simpson’s Paradox by chance. For
dealing with both these issues, we are currently developing tech-
niques based on novel index structures and the FDR method.

3.2.2 Other Hypothesis Testing Issues
So far we only focused our attention on Type I error on homo-

geneous data. However, the Type II error can be as important and
(if possible) should be quantified as well. Furthermore, many test
can fail on non-homogeneous data and ideally, QUDE should warn
the user in those cases or suggest different types of tests. In the
context of ML, similar issues, such as the Base Rate Fallacy or
the Imbalance of Labels, can significantly disturb the result if the
system/user does not control for it. Similar, Pseudoreplication, a
very common problem with data collected in life-sciences, may lead
to detect a false statistical significance. While it is not possible
to automatically detect all of these issues as they might depend
on the semantics of the data itself, it might be possible to derive
some of the issues automatically based on the schema, analyzing
the general data statistics (e.g., for the base rate fallacy), or testing
for correlations.

3.3 Data Quality Issues
Finally, many issues can also arise from dirty data in form of

missing, duplicate, or inconsistent records. Unfortunately, all data
cleaning techniques are expensive, in both time and money (e.g.,
to pay humans to correct errors) [26], are often not adequate for
interactive data exploration, and in almost all cases it is unrealistic
to assume that a data-set is perfectly cleaned upfront.

3.3.1 Estimating Remaining Errors
For data exploration it is often more important to understand

how many errors a dataset contains and whether these errors are
systematic or random rather than trying to correct all errors. This
would allows an analyst greater insight on the both the data set
and the potential risk factors. While a simple question at first, it



is actually extremely challenging to define data quality without
knowing the ground truth [28, 4, 9, 10, 20].

A naïve approach would be to “perfectly” clean a small sample as
the gold-standard data (as in [35]) and extrapolate the insight of the
cleaning process to the entire data set. For example, if we found 10
new errors in a sample of 1000 records out of 1M records, we would
assume that the total data set contains 10000 total errors. A very
small sample of cleaned data may however not be representative
of the entire dataset. Further, how can the analyst determinate
whether the sample itself is actually perfectly clean without a quality
metric? As part of QUDE, we have therefore started to develop
alternative methods to the naïve estimator, which consider the entire
data set – albeit when it is imperfectly cleaned. Our core insight is
that almost any cleaning technique has diminishing returns, that is,
every additional error is more difficult to detect.

3.3.2 Automatically Repairing Errors
As a second step, we are exploring the possibility of using our

insight for the remaining errors in order to automatically correct
query answers and models. For example, in previous work [6] we
developed and analyzed techniques to estimate the impact of the
missing data (a.k.a., “unknown unknowns”) on simple aggregate
queries. The key idea is that the overlap between different data
sources enables us to estimate the number and values of the missing
data items. Our main techniques are parameter-free and do not
assume prior knowledge about the distribution. For future work, we
plan to develop similar techniques to correct for a broader range
of analytical queries and to learn repair procedures for other errors
based on the history of user interactions as well as data characteris-
tics that can either be applied automatically or simply suggested to
the user during exploration.

3.4 Current State of QUDE
QUDE currently performs risk evaluations using default hypothe-

ses for simple workflows. We implemented QUDE as part of Viz-
dom and currently evaluate different types of user feedback and
warnings as outlined in our storyboards. We also already developed
techniques for quantifying the impact of the unknown unknowns [6],
currently evaluate the data quality metrics with several real world
use cases, and developed new approximation algorithms for detect-
ing the Simpson’s Paradox. However, by no means do we claim
that we solved all open issues. Rather, we believe that QUDE is
just a first step towards a potential new research area focused on the
control of various risk factors in all type of analytics.

4. CONCLUSION
We demonstrated that recent recommendation systems such as

SeeDB [34] and Data Polygamy [5] significantly increase the risk
of making false discoveries. We further presented our vision and
initial ideas for QUDE, a system for automatically controlling the
various risk factors in interactive data exploration, automatic model
building, and insight recommendation. The goal of this work is,
on one hand, to point out that the risk of false discoveries can not
be ignored, and on the other, to outline possible solutions with the
hope to foster a new line of research around tools for sustainable
insights.
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