
Data Tiering in Heterogeneous Memory Systems

Subramanya R Dulloor1,2 Amitabha Roy1 Zheguang Zhao3 Narayanan Sundaram1

Nadathur Satish1 Rajesh Sankaran1 Jeff Jackson1 Karsten Schwan2

1Intel Labs, 2Georgia Institute of Technology, 3Brown University

Abstract

Memory-based data center applications require increasingly
large memory capacities, but face the challenges posed by
the inherent difficulties in scaling DRAM and also the cost of
DRAM. Future systems are attempting to address these de-
mands with heterogeneous memory architectures coupling
DRAM with high capacity, low cost, but also lower per-
formance, non-volatile memories (NVM) such as PCM and
RRAM. A key usage model intended for NVM is as cheaper
high capacity volatile memory. Data center operators are
bound to ask whether this model for the usage of NVM
to replace the majority of DRAM memory leads to a large
slowdown in their applications? It is crucial to answer this
question because a large performance impact will be an im-
pediment to the adoption of such systems.

This paper presents a thorough study of representative ap-
plications – including a key-value store (MemC3), an in-
memory database (VoltDB), and a graph analytics frame-
work (GraphMat) – on a platform that is capable of emu-
lating a mix of memory technologies. Our conclusions are
that it is indeed possible to use a mix of a small amount
of fast DRAM and large amounts of slower NVM without
a proportional impact to an application’s performance. The
caveat is that this result can only be achieved through careful
placement of data structures. The contribution of this paper
is the design and implementation of a set of libraries and au-
tomatic tools that enables programmers to achieve optimal
data placement with minimal effort on their part.

With such guided placement and with DRAM constitut-
ing only 6% of the total memory footprint for GraphMat
and 25% for VoltDB and MemC3 (remaining memory is
NVM with 4× higher latency and 8× lower bandwidth than
DRAM), we show that our target applications demonstrate
only a 13% to 40% slowdown. Without guided placement,

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

EuroSys ’16 April 18-21, 2016, London, United Kingdom
Copyright c© 2016 ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901344

Parameter DDR-DRAM NVM
Capacity per CPU 100s of GBs Terabytes
Read Latency 1× 2× to 4×
Write bandwidth 1× 1

8× to 1
4×

Estimated cost 5× 1×
Endurance 1016 106 to 108

Table 1: Comparison of new memory technologies [4, 46].
NVM technologies include PCM and RRAM [4, 46]. Cost
is derived from the estimates for PCM based SSDs in [33].
Since writes to write-back cacheable memory are posted, the
effect of NVM’s slower writes is lower bandwidth to NVM.
For reads, latency is the critical metric.

these applications see, in the worst case, 1.5× to 5.9×
slowdown on the same configuration. Based on a realis-
tic assumption that NVM will be 5× cheaper (per bit) than
DRAM, this hybrid solution also results in 2× to 2.8× better
performance/$ than a DRAM-only system.

1. Introduction

Data center applications like key-value stores [21, 45], in-
memory databases [15], and data analytics [29, 52] are being
used to handle exponentially growing datasets but cannot
tolerate the performance degradation caused by spilling their
workloads to disk. On the other hand, DRAM density (and
cost) is not scaling due to physical limitations [36, 46],
meaning that continuing to fit growing datasets in DRAM
will be unviable in the future.

To address this challenge, industry is exploring new non-
volatile memory technologies (or NVM) [6, 30, 46]. These
memory technologies are positioned between DRAM and
secondary storage (such as NAND flash), both in terms of
performance and cost. Table 1 quantifies this tradeoff. NVM
provides approximately 5× the capacity at the same cost
as DRAM for less than an order of magnitude reduction
in performance (up to 4× higher latency and 8× lower
bandwidth).

The likely deployment of NVM is in systems that have a
mix of DRAM and NVM. Most of the memory in such sys-
tems will be NVM to exploit their cost and scaling benefits,
with a small fraction of the total memory being composed
of DRAM. Application developers and data center operators

0

50

100

150

DRAM 300-40 450-40 600-40 600-20 600-10 600-5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

NVM Latency(ns)-Bandwidth(GB/s)

MemC3 Memcached

Lower is better

0

5

10

15

20

25

30

DRAM 300-40 450-40 600-40 600-20 600-10 600-5

TP
S

(i
n

 t
h

o
u

sa
n

d
s)

NVM Latency(ns)-Bandwidth(GB/s)

VoltDB

Higher is better

0

50

100

150

200

DRAM 300-40 450-40 600-40 600-20 600-10 600-5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

NVM Latency(ns)-Bandwidth(GB/s)

GraphLab X-Stream Galois GraphMat

Lower is better

a) Key-value stores b) In-memory databases c) Graph analytics
Figure 1: Effect of memory latency and bandwidth on the performance of large in-memory applications.

looking at deploying DRAM and NVM based hybrid mem-
ory systems are justifiably concerned about the performance
overheads due to the vast majority of the memory being sev-
eral times slower than traditional DRAM.

To illustrate the effect of NVM’s characteristics on an ap-
plication’s performance, consider three different applica-
tions: (i) a Facebook like trace [21] running on the pop-
ular Memcached [10] and MemC3 [28] key value stores,
(ii) standard TPC-C benchmark on the VoltDB [15] in-
memory database, and (iii) a set of graph analytics frame-
works [29, 41, 47, 52] running the Pagerank algorithm [23]
on the Twitter dataset [34]. DRAM’s latency and bandwidth
on this system are 150 ns and 40 GB/s, respectively. NVM
technology is evolving and will likely exhibit a range of
performance characteristics, depending on the details of the
technology and the controller design. We therefore vary the
parameters of our NVM emulator [39] to reflect this scenario
by first varying the latency from 300ns to 600ns, while keep-
ing the bandwidth the same as DRAM and then varying the
bandwidth from 40 GB/s (same as DRAM) down to 5 GB/s
(12.5% of DRAM), while keeping latency fixed at the worst
case of 600ns. All applications are run in multi-threaded (or
multi-process) mode, occupying eight cores. Figure 1 un-
derlines that the performance impact across all application
categories can be as much as 6× for NVM - that has 4×
the latency and 1

8× the bandwidth of DRAM. Depending on
the actual implementation, these applications are sensitive to
NVM’s higher latency or lower bandwidth or both. Stream-
ing oriented applications (such as GraphMat and X-Stream)
are particularly sensitive to NVM’s lower bandwidth, while
the others (with lower bandwidth requirement) are more sen-
sitive to NVM’s higher latency.

To overcome the performance degradation in an “NVM
only” system, future systems are likely to couple NVM with
a smaller amount of DRAM, resulting in a truly heteroge-
neous memory architecture. A simple approach for dealing
with the differing characteristics of DRAM and NVM in
such systems is to treat DRAM as a cache for NVM and
apply classic paging techniques to dynamically move data
between them on demand. Unfortunately this solution leads
to suboptimal performance for a number of reasons. First, it
ignores the fact that objects with different access character-
istics can be located on the same page, forcing co-located

objects to face the same treatment from the paging sys-
tem. Second, paging comes with high overheads [17] that
are unacceptable in general and particularly in the context
of directly attached NVM where data does not need to be
paged in to be accessed. In fact most of the applications
considered in this paper explicitly forbid paging of their en-
tire in-memory data (using mlock for instance), emphasizing
the need for a more sophisticated solution than traditional
paging.

The first contribution of this paper is a quantitative study
demonstrating that a large portion of this slowdown can
be removed by judiciously placing some application data
structures in the small amount of DRAM available in a
hybrid memory system.

The second contribution of this paper is showing that the
performance impact of placing a data structure in a particu-
lar type of memory depends on the access pattern to it. This
dependence is due to different memory access patterns – se-
quential, random and pointer chasing – having very different
effective latencies on modern superscalar out-of-order pro-
cessors. The frequency of accesses to application data struc-
tures by itself is not sufficient to determine the relative “hot-
ness” of these data structures.

The third contribution of this paper is the design and con-
struction of a memory management infrastructure (called X-
Mem) whose API allows programmers to easily map objects
to data structures that they belong to at the time of object al-
location. The implementation of X-Mem then places objects
of different data structures in disjoint regions of memory,
therefore preserving semantic information at the granularity
of a single allocation.

The fourth contribution of this paper is a profiling tool that
automatically identifies the access pattern to a data structure
and automates the task of mapping memory regions of that
data structure to DRAM or NVM to optimize performance.

The final result is optimal performance without program-
mers needing to reason about their data structures, processor
behavior or memory technologies. Using a small amount of
DRAM (only 6% of the total memory footprint for Graph-
Mat, and 25% for VoltDB and MemC3) the performance
of these applications is only 13% to 40% worse than their

DRAM based counterparts, but at much reduced cost, with
2× to 2.8× better performance/$. Intelligent data structure
placement is the key to achieving this result, without which
these applications can perform 1.5× to 5.9× worse on the
same configuration, depending on actual data placement.

Based on these results, we contend that a hybrid architec-
ture offering both DRAM and NVM, where software has
direct access to its different types of memories is indeed a
realistic approach to building systems that can tackle the ex-
ponentially growing datasets at reasonable performance and
compelling cost.

2. X-Mem Design

X-Mem can improve application performance by automati-
cally placing data-structures in appropriate memory types.
However, in order to do that it must distinguish between
objects belonging to different data structures. To solve this
problem, X-Mem provides an expanded memory allocation
interface that allows programmers to specify a tag during
memory allocation. By using a unique tag for each data
structure, programmers provide the necessary information
for the X-Mem runtime to map each object to its data struc-
ture.

Start

Identify application data structures that scale with
the memory footprint

Tag the allocation of application data structures
using the X-Mem API

Profile run
Enable the X-Mem profiler.

Run the application with the X-Mem runtime.
Derive the relative priority of data structures.

Tag->Priority

Placement
objective

Output

Done

Memory
configuration

Input Input

Production run
Disable the X-Mem profiler.

Run the application with the X-Mem runtime.

Input

Figure 2: An overview of tiering with X-Mem

Figure 2 shows an overview of the process for tiering appli-
cation data with X-Mem. The preparation of an application

void* xmalloc(int tag, size_t size);
void xfree(size);
void xmem_priority(int tag, int prio);

Figure 3: X-Mem API

for production run with X-Mem consists of the following
two steps.

(1) Tagging of the application data structures: Since the goal
of tiering is to exploit the larger capacity of NVM, this step
includes the manual effort of identifying the on-heap data
structures that scale with the application’s memory footprint,
and explicitly tagging the allocation of those data structures
using the X-Mem allocator API (§2.1).

(2) Automatic classification of the data structures: X-Mem’s
automatic classification involves profiling an application to
determine the benefit of placing an application data structure
in DRAM vs. NVM, relative to the other application data
structures. The output of this step, a tag-to-priority map that
encodes these relative benefits, is then used by the X-Mem
runtime to determine the optimal placement of application
data structures.

X-Mem’s automatic classification has some limitations due
to its static nature and offline profiling. For one, it assumes
homogeneous behavior within a data structure, which is a
reasonable assumption for the applications and workloads
considered in this paper (§5). A more generic solution would
require efficient online tracking of the objects with the same
tag. We plan to address this problem in future. Secondly,
while tagging application data structures is a one-time ef-
fort, automatic classification is dependent on the workload.
If the workload behavior changes dramatically, the current
system requires another round of classification to adjust to
the new behavior. Data centers often employ shadow infras-
tructure to test their code before deployment. One option is
to periodically profile the workload in this shadow environ-
ment and re-classify the application data accordingly.

2.1 Allocator API

Figure 3 shows the X-Mem API. The allocation routine
(xmalloc) is the same as the standard malloc memory al-
locator API, except for the addition of a data classifier (or
tag). In our current implementation, if an application wishes
to change the tag of data after allocation, it has to explic-
itly allocate new data with the required tag and copy the old
contents.

xmem priority enables applications to explicitly assign pri-
ority values to the tags. Memory belonging to higher priority
tags is preferred for placement in faster memory (DRAM).
X-Mem applies automatic placement to break ties between
data structures of the same priority. By default, all data struc-
tures have the same priority leaving X-Mem as the sole au-
thority that determines placement.

X-Mem is designed to tier in-memory application data that
is being scaled up over time. Such data is usually dynami-
cally allocated on the heap, and therefore the X-Mem API
is targeted at dynamic memory management. Statically allo-
cated data structures and the program stack continue to be
allocated in DRAM by the default runtime mechanisms.

2.2 Allocator Internals

Since the purpose of this work is placement in hybrid mem-
ory systems rather than optimizing memory allocators for
NVM, X-Mem internally uses a standard memory alloca-
tor (jemalloc [2]) to manage memory. Unlike normal us-
age however, X-Mem instantiates a new jemalloc allocator
for each tag that it sees. Each tag is therefore mapped to a
unique allocator and all memory allocation and deallocation
for objects with a particular tag are redirected to the memory
allocator associated with the tag.

X-Mem assumes ownership of a large contiguous range in
the application’s virtual address space (using mmap). This
virtual address space is managed by a special “root” alloca-
tor. An allocator used to manage memory for a particular tag
(data structure) grows or shrinks its memory pool in units
of a region that is allocated (deallocated) from the root allo-
cator. Each region has a fixed size that is a power of two -
for this paper we use regions that are 64 MB in size. At any
given point, a region in use is assigned to exactly one jemal-
loc instance. All objects in a region therefore have the same
tag. Unused regions belong to the root allocator.

Some metadata (§4) is maintained for each memory region to
guide placement decisions. A hash table of regions indexed
by the start address of the region allows easy access to region
metadata and the allocator owning the region. It is therefore
easy to map an address to the start address of its containing
region by masking the appropriate number of bits - the lower
26 bits for 64 MB regions. The start address of the region
is used to index into the hash table and allows locating
the appropriate allocator for xfree operations and region
metadata. The metadata overheads are negligible compared
to the 64 MB region size.

2.3 Mapping Regions to Memory Types

X-Mem maps regions to memory types based on its auto-
matic placement algorithm that we describe later (§4). We
expose NVM as a memory-only NUMA node separate from
DRAM and use the mbind system call to restrict physical
memory allocations for a region to a particular NUMA node
– i.e., to DRAM or NVM.

At run time, as new memory regions are added to the pro-
gram, the newly added regions can displace memory re-
gions from DRAM. This displacement causes X-Mem to
trigger migration to change the type of physical memory

backing an existing virtual region from DRAM to NVM.
We simply reissue an mbind call with the desired mapping
for the region, leaving the operating system (Linux) to do
the heavy lifting of actually migrating pages and updating
page tables synchronously. We note that this process leaves
the application-visible virtual addresses unchanged, allow-
ing the application to continue running unmodified. Also,
this design results in X-Mem being entirely restricted to user
space, making it portable and easy to deploy as a library.

Figure 4 shows an example of X-Mem’s data placement
and migration policies. The application in this case allocates
three data structures (tree, hash, and buffer) using the X-
Mem API. Memory allocations for each of these data struc-
tures are managed by a separate jemalloc instance. The tags
used by the application (T1, T2, and T3) are assigned internal
priorities (§4) used to decide placement.

Migration

DRAM NVM

Application VA

xmalloc(T1, <sz>)

T2; T1; T3

Placement
order

xmalloc(T2, <sz>)

T1 T2 T3

DS1 (Hash) DS2 (Tree) DS3 (Buffer)

xmalloc(T3, <sz>)

X-Mem Allocator

Allocator 1 Allocator 2 Allocator 3

Application
Data Structures

Figure 4: X-Mem design

3. Memory Access Time Model

X-Mem supports automatic assignment of virtual memory
regions to physical memory types to optimize performance.
Optimum placement is based on a model of memory access
time in superscalar processors that we now describe.

For working sets that do not fit in the last level cache, every
accessed cacheline is equally likely to result in a miss under
the assumption of lack of temporal locality due to uniformly
distributed accesses over the working set. For brevity in
notation, we consider the case of N data structures in a
program. Let Si be the stall time for each access to data
structure i and let Ci be the count of the number of accesses
made to the data structure from a single thread. The average
time for a memory access:

A =

N
∑

i=1
Ci ∗Si

N
∑

i=1
Ci

(1)

The stall for each access to the data structure clearly depends
on the latency to memory, which in turn is determined by the
type of memory that the data structure is placed in. However
that piece of information alone is insufficient.

The stall latency of each access in a modern superscalar pro-
cessor is not the same as the time to access memory. The
processor can hide the latency to access memory by locat-
ing multiple memory requests in the instruction stream and
then using out-of-order execution to issue them in parallel
to memory via non-blocking caches [39]. In addition, mi-
croprocessors incorporate prefetchers that locate striding ac-
cesses in the stream of addresses originating from execution
and prefetch ahead. As a result the effective latency to ac-
cess memory can be much smaller than the actual physical
latency for certain access patterns.

Dependent Independent
Sequential NA Streaming

Non-sequential Pointer chasing Random
Table 2: Overview of memory access patterns

Table 2 shows a classification of the memory accesses along
two axes – sequential vs. non-sequential and independent vs.
dependent. One of these access patterns (sequential and de-
pendent) rarely appears in the real-world applications, and
we therefore ignore that pattern. We illustrate the effects
of the processor’s latency-hiding features using a set of mi-
crobenchmarks that consider the other three access patterns:

• Random: The instruction stream consists of independent
random accesses. The processor can use its execution
window to detect and issue multiple requests simultane-
ously.

• Pointer chasing: The processor issues random accesses
but the address for each access depends on the loaded
value of a previous one, forcing the processor to stall until
the previous load is complete.

• Streaming: The instruction stream consists of a striding
access pattern that can be detected by the prefetcher to
issue the requests in advance.

In Figure 5 we vary the latency and bandwidth characteris-
tics of memory in our NVM performance emulator (§5.1).
Pointer chasing experiences the maximum amount of stall
latency, equal to the actual physical latency to memory. In
the case of random access, out-of-order execution is effec-
tive at hiding some of the latency to memory. In the case
of streaming access, the prefetcher is even more effective at
hiding latency to memory. The order of magnitude differ-
ence in the performance of these access patterns validates
our observation that the frequency of accesses alone is not
sufficient to determine the “hotness” of a data structure, and
illustrates the need for the more sophisticated classification
of memory accesses proposed in this paper.

1

10

100

1000

DRAM 300-10 450-10 600-10

La
te

n
cy

 (
in

 n
s)

Pointer Random Streaming

Figure 5: Memory read latency for various access patterns.

The microbenchmarks give us an effective way to measure
the average stall latency for different types of accesses and
data structures. We use L(p,m) to indicate the stall latency
for accesses of pattern p to memory of type m.

4. Profile Guided Placement

Optimizing placement in X-Mem works as follows. First, we
use a profiler to determine the relative frequency of different
types of access to each data structure (tag). Second, during
production runs the profiling data is used to maintain a list of
memory regions sorted by preference for their placement in
faster memory (DRAM). As many regions as possible from
the head of the list are mapped to DRAM leaving the rest in
slower NVM. We first describe our profiler and then describe
how the profile data is used by X-Mem at runtime.

4.1 Profiler

Figure 6 shows the process of profiling and automatic classi-
fication with X-Mem. We use a profiling tool that operates in
conjunction with the X-Mem memory allocator described in
§2. For each data structure tag, the tool classifies accesses to
its regions as one of random, pointer chasing and streaming,
and counts the number of accesses of each type. Note that
we modify the application only once to use the X-Mem API
for memory allocation, and use the same binary for profiling
and the actual production run.

The profiler uses PIN [37] to intercept memory accesses
and record (for each access) the address that was accessed.
This information is stored in a buffer and processed peri-
odically (every 1024 memory operations, by default) using
the post-processing algorithm shown in Figure 7. For each
window of memory operations, we first sort the accesses in
the buffer, effectively grouping accesses to the same region
together. We iterate through the buffer searching for access
pairs where the value at the location of the first access equals
the address of the location of the second access. We interpret
this pattern as pointer chasing to the second location and at-
tribute the stall latency to the second access. To comprehend
the more complex addressing modes (base register plus an
offset), we use PIN’s facility to record the contents of the
base register used for address generation rather than the en-
tire effective address. We also maintain a sliding window (of

Start

Run the workload with the X-Mem profiler
enabled

Tag->Priority

Access statistics

Capture a window of memory operations to
the address range managed by X-Mem

Process the memory trace.
Update (per region) memory access pattern

statistics.

End of run?

No

Yes

Convert per region statistics to per data
structure statistics

Input

Run X-Mem placement algorithm.
Compute per data structure benefit of

placement in DRAM.

Placement
objective

Output

Done

Input

Figure 6: An overview of the profiling step with X-Mem

size 8 by default) over elements of the sorted buffer to de-
tect streaming accesses where consecutive elements of the
window differ by the same amount. We also count the to-
tal number of accesses to a memory region. Subtracting the
number of streaming and pointer chasing accesses from this
total number gives us the number of random accesses.

In the post-processing algorithm we eliminate accesses to
the same cacheline assuming that the set of accesses in the
buffer would fit in cache and repeated accesses to the same
cacheline do not go to memory. The cost of post-processing
the buffer grows slowly with the size n of the buffer as
O(nlog(n)) and therefore we are able to use a large buffer
(of size 8KB) to amortize the cost of switching the context
from running the application to running the analysis routine.

As described in §2 we maintain metadata for each memory
region and are able to access the metadata starting from an
address via a hash index. This metadata includes the counters
we use in Figure 7.

After the program terminates, we roll up the counters from
all memory regions for a particular data structure into a per-
memory region average that is attached to the parent data

Input: A buffer of addresses

Sort the buffer by address
sliding_window = ()

for each access i in sorted buffer:
if exists access j in sorted buffer s.t.

j.address == *i.address
and
Cacheline(j.address) !=

Cacheline(i.address)
region[j.address].pointer_chasing++

if Cacheline(i.address) !=
Cacheline(sliding_window.end().address)
Advance sliding_window to include i
if sliding_window is a strided pattern

Region[i.address].streaming++
Region[i.address].accesses++
if i is a read

Region[i.address].reads++
else

Region[i.address].writes++

Figure 7: Classifying Access Type

structure (tag). This average consists of three counters – one
each for pointer chasing, random and streaming accesses.
Since data structures can have different kinds of accesses
(such as traversing a linked list and then accessing fields of a
particular node), we do not attempt any further classification
of the data structure. We use Fi(p) to denote the fraction of
accesses of pattern p to data structure i as read from these
counters.

4.2 Runtime

The runtime estimates Equation 1 using the profiling infor-
mation. Let T (r) be the type of memory in which memory
region r is placed and let D(r) be the parent data structure of
r. We estimate the memory access time for a given configu-
ration as follows:

Â = ∑
r∈Regions

∑
p∈Patterns

FD(r)(p)L(p,T (r)) (2)

We use the profiling run estimate of the average number of
accesses of a particular pattern to a memory region, and then
multiply it by the appropriate latency of that access pattern.

The placement algorithm aims to minimize the quantity Â by
choosing the right assignment of memory regions to memory
types, while respecting the capacity constraints of each type
of memory. Since this paper deals with only two different
types of memory (standard DRAM and slower NVM), we
cast this problem as follows.

We start by assuming that all regions are in NVM. Given
a fixed amount of faster DRAM, moving some memory
regions to DRAM would reduce the average access time.
Hence the problem is to choose a set of memory regions
moving which maximizes the gain.

For any memory region r the benefit of moving to DRAM
is:

B(r) = ∑
p∈Patterns

FD(r)(p)[L(p,NV M)−L(p,DRAM)] (3)

The estimated average access time in a hybrid memory sys-
tem can therefore be rewritten as follows:

Â = ∑
r∈Regions

∑
p∈Patterns

FD(r)(p)L(p,NV M)− ∑
r∈DRAM

B(r)

(4)

To minimize Â we need to maximize the second term. We
have a fixed number of slots in DRAM into which we can
place memory regions and a fixed real quantity B(r) that
quantifies the benefit of putting memory region r in DRAM.
We use a greedy algorithm to maximize the total benefit by
first sorting the regions into a list ordered by decreasing ben-
efit, and then placing regions starting from the head of the
list into DRAM until no more space is left in DRAM. This
algorithm is optimal because any placement that does not
include one of the chosen regions can be further improved
by replacing a region not in our chosen set with the missing
region.

We note that the benefit B(r) is the same for all memory
regions of a particular data structure. Therefore we compute
this quantity as a property of the data structure itself and use
it for each memory region of the data structure.

4.3 Loaded Latency

Our model ignores queuing delays caused by traffic from
other cores. In Equation 3, we use the difference in latencies
of access to NVM and DRAM. Requests to all types of
memory (for all access patterns) follow the same path from
the core to the memory controller before being dispatched
to the appropriate memory channel. The queuing delays are
therefore the same for both types of memory and cancel out.

5. Evaluation

We evaluate X-Mem using a set of representative appli-
cations: a high-performance graph analytics framework
(GraphMat), an in-memory database (VoltDB), and a key-
value store (MemC3). All three applications work on data

sets that can be scaled up and therefore have potential to
benefit from the larger capacity and lower cost of NVM in a
hybrid memory system. The evaluation has two objectives.
The first is to show that the performance of all three ap-
plications depends significantly on the placement choice for
each data structure in them. Second, we aim to show that our
placement technique (§4) correctly identifies access patterns
to each data structure and enables optimal data placement
with X-Mem. To demonstrate the results - in all cases - we
provide two baselines for comparison. The first is NVM-only
– in which an application’s memory is allocated entirely
from NVM. NVM-only depicts the worst case performance
of unmodified applications in a hybrid memory system. The
second is DRAM-only, which represents the best-case perfor-
mance of an application when all accessed data is allocated
in fast DRAM.

We perform all experiments on a hybrid memory emulator
(§5.1) that runs at full speed. For the network-based applica-
tions (Memcached and VoltDB), we use a dedicated machine
to run clients that drive the application under test. The client
machine is connected directly to the server (with no interme-
diate switch) via multiple 10 GigE NICs, therefore ensuring
that neither the network nor the clients are limiting the per-
formance and we can focus entirely on the interaction with
main memory.

Although NVM technologies have been announced by some
manufacturers [1], the industry is still actively developing
the first generation of NVM as well as the controllers to
which they will be attached. As a result, till the technology
matures, one can expect a spectrum of performance char-
acteristics from NVM, rather than a single point. For proper
sensitivity analysis, we therefore use the hybrid memory em-
ulator to study a range of NVM latency and bandwidth char-
acteristics to obtain broad applicability for our results.

5.1 Hybrid Memory Emulator

The hybrid memory emulation platform (HMEP) [39] was
built by Intel to support the exploration of software stacks
for hybrid memory systems. HMEP enables the study of hy-
brid memory with real-world applications by implementing
– (i) separate physical memory ranges for DRAM and em-
ulated NVM (using a custom BIOS), and (ii) fine-grained
emulation of configurable latency and bandwidth for NVM
(using custom CPU microcode).

HMEP is restricted to Intel proprietary Xeon E5-4620 plat-
forms, with each of its two processors containing eight 2.6
GHz cores. Hyperthreading is disabled. Each CPU supports
four DDR3 channels and memory is interleaved across the
CPUs. The measured DRAM latency and bandwidth on the
system are 150ns and 37GB/s, respectively. HMEP has been
used before in other research [20, 26, 27, 43, 44, 56], and
described in detail elsewhere [39]. A sufficient number of

HMEPs are available to researchers such as us to both enable
the exploration of NVM configurations at full speed (avoid-
ing the overheads of simulation) as well as to enable easy
reproduction of results of others using HMEP.

We present results for six HMEP configurations that rep-
resent the performance spectrum for NVM (Table 1). In
these configurations, NVM’s latency ranges from 2× to 4×
of DRAM latency (300ns, 450ns, and 600ns), and NVM’s
bandwidth varies from 1

4× to 1
8× of DRAM bandwidth

(10GB/s to 5GB/s). In addition, we also evaluate different
ratios of NVM to DRAM sizes in the system. We use 1/T
to refer to a setup where the DRAM size is 1/T of the total
available memory in the system. In all the tests, we give a
fixed amount of total memory (equal to the sum of DRAM
and NVM) to the application. Corresponding to these setups,
we also consider the cost of the total memory. For general-
ity, NVM cost is derived from prior research that expects
NVM (PCM) based SSDs to be 4× more expensive than en-
terprise MLC NAND flash SSDs [33]. Based on the preva-
lent prices of DDR-based DRAM [19] and a conservative
estimate that directly addressable NVM devices presumed in
this work will be more expensive than NVM-based SSDs (at
least initially), we assume that DRAM is 5×more expensive
than NVM on cost-per-bit basis. Since memory costs signifi-
cantly higher than other server components in large memory
systems of interest to this paper, we use the above cost esti-
mate as the proxy for total server cost.

5.2 Modifications to use the X-Mem API

Modifying applications to use the X-Mem API involves very
few (10 to 50) lines of code in any of the applications. For
each application, we first identify data structures that grow
with the size of the application data and occupy significant
portions of the application’s memory footprint. Only such
large data structures are allocated using the X-Mem API;
other data continues to be allocated in DRAM using the de-
fault system allocator. Each data structure is given a unique
tag. We are exploring options to automate the process of at-
taching a unique tag to each data structure, perhaps as com-
piler extensions.

6. GraphMat

Exploding data sizes leads to a need for large-scale graph-
structured computation in various application domains [38].
Large graph processing, however, lacks access locality and
therefore many graph analytics frameworks require that the
entire data fit in memory [29, 38, 52].

We study a high performance in-memory graph analytics
framework called GraphMat [52] that implements a vertex-
centric scatter-gather programming model. The performance
of graph analytics frameworks (like GraphMat) depends

both on the topology of the graph and the specific algo-
rithm [39, 48, 52].

0

5

10

15

20

25

30

B
an

d
w

id
th

 (
in

 G
B

/s
)

Time

Read Write

0

20

40

60

80

100

%
 o

f
p

h
ys

ic
al

 m
em

o
ry

 la
te

n
cy

Time

a) Memory bandwidth b) Effective memory latency
Figure 8: Memory usage in GraphMat (Pagerank algo-
rithm).

Test details: Since the topic of this paper is not graph pro-
cessing, we present results only from execution of the Pager-
ank algorithm [23] on a large graph representing the Twitter
follower network [34]. The graph has 61.5 million vertices
and 1.4 billion edges. The Pagerank algorithm on this graph
ranks users by connectivity to influential followers to iden-
tify the most influential individuals in the sample of the Twit-
ter network captured in the dataset. The memory footprint of
the workload is approximately 32GB.

Figure 8 shows the bandwidth requirements and the effec-
tive latency of GraphMat when running the test. Effective
latency, shown as percentage of the actual physical memory
latency, approximates the average memory read latency in
an application by measuring the core stalls due to pending
reads per last level cache miss. GraphMat can achieve very
high bandwidth usage (of up to 25GB/s read and 15GB/s
write bandwidth) but its effective latency is low (mostly un-
der 20%) due to GraphMat’s ability to exploit CPU’s MLP.
GraphMat’s performance is therefore highly sensitive to
lower bandwidth, but only to some extent to higher latency.
This explains the degradation in the NVM-only performance
of GraphMat with the decrease in bandwidth rather than in-
creased latency (Figure 9a).

6.1 Data Structures and Placement

GraphMat takes vertex programs and maps them to highly
optimized, scalable sparse matrix operations in the backend.
GraphMat implements graph algorithms as iterative general-
ized sparse matrix-sparse vector multiplication (or SPMV)
that updates some data associated with the vertices (e.g.,
Pagerank).

Graphmat has three main data structures: a sparse vector, a
dense vector of vertex data and finally the adjacency matrix
of the graph in compressed sparse row format. The sparse
vector of vertex data is built on every iteration and consists of
the data from active vertices in the computation. By reading
from and writing to the sparse vector rather than the full
dense vector of vertices, Graphmat achieves better cache
efficiency. We modify GraphMat to use xmalloc for these
three data structures.

Data structure %Size %Accesses Access pattern Benefit per region
%pointer %seq %random %writes

Sparse Vectors 3.5 92.64 0.0 0.34 99.64 32.75 3948.06
Vertex Data 2.4 1.53 0.0 13.98 86.02 56.02 67.05

Adjacency Matrix 94.1 5.83 0.0 0.0 100.0 0.0 9.30

Table 3: Memory tiering in GraphMat with the X-Mem API.

200

600

1000

1400

1800

300-10 450-10 600-10 300-5 450-5 600-5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

NVM Latency(ns)-Bandwidth(GB/s)

DRAM-only NVM-only 1/32 1/16 1/2

10

100

1000

Ti
m

e
(i

n
 s

ec
o

n
d

s)
SPMV Other Total

0

1

2

3

4

300-10 450-10 600-10 300-5 450-5 600-5

N
o

rm
al

iz
ed

 p
er

f/
$

NVM Latency(ns)-Bandwidth(GB/s)

DRAM-only NVM-only 1/32 1/16 1/2

a) Tiering performance b) Breakdown of time taken (at 600-5) c) Tiering performance/$
Figure 9: Evaluation of memory tiering in GraphMat.

Table 3 illustrates the inner workings of X-Mem’s auto-
matic placement algorithm. We provide the sizes of the three
GraphMat data structures (relative to the total memory foot-
print) in the second column, and the relative access fre-
quencies of those data structures in the third column. The
most frequently accessed data structure is the sparse vector,
followed by vertex data and finally by the adjacency ma-
trix. The next group of columns breaks down the accesses
to each data structure as pointer chasing, sequential scans
and random accesses. For the sake of completion, we also
show the percentage of accesses to the data structures that
are writes. The access to the sparse vector and adjacency
matrix is largely random. The access to the vertex data is
somewhat sequential - depending on the active vertices ac-
cessed at every pass to build and tear down the sparse vector.
The product of the fraction of accesses and the fraction of a
particular type gives us the Fi(t) quantity for that particular
data structure (Equation 3). In the last column of the table,
we show the benefit computed by the placement algorithm
for the 450-10 configuration of NVM. The placement algo-
rithm prioritized the sparse vector for placement in DRAM
followed by the vertex data and finally the adjacency matrix.

Figure 9a shows the performance of Graphmat with vary-
ing memory configurations and X-Mem’s adaptive place-
ment enabled. GraphMat’s performance for NVM-only is
worse than that for DRAM-only by 2.6× to 5.9×, with the
drop in performance particularly steep at lower peak NVM
bandwidth. Most of the performance gap can be attributed to
sparse vectors, which account for only 3.5% of GraphMat’s
footprint (of 32GB). Figure 9b depicts this overwhelming
contribution of SPMV operations, which use sparse vectors,
to the overall run time of GraphMat. Performance improves
dramatically with 1/32 tiering – only 1.17× to 1.55× worse
than DRAM-only – because X-Mem is able to place sparse
vectors in available DRAM. With 1/16 tiering, X-Mem can
allocate vertex data (less than 2.5% of the total footprint) in
DRAM and that improves tiered GraphMat’s performance

to within 1.13× to 1.4× of DRAM-only. Beyond 1/16, per-
formance is limited by uniform (bandwidth-bound) accesses
to the large adjacency matrix. Hence, 1/2’s performance is
1.09× to 1.29× of DRAM-only, a minor improvement over
1/16 but at much higher cost.

From the cost viewpoint, 1/32’s performance/$ is 2.9× to
3.8× that of DRAM-only and 2× to 3.4× compared to
NVM-only. 1/16 is only slightly behind 1/32 – 1.83× to
2.5× compared to DRAM-only. Interestingly, 1/2’s perfor-
mance/$ is worse than that of DRAM-only and NVM-only
across all HMEP configurations.

7. VoltDB

0

1

2

3

4

5

B
an

d
w

id
th

 (
in

 G
B

/s
)

Time

Read Write

0

20

40

60

80

100
%

 o
f

p
h

ys
ic

al
 m

em
o

ry
 la

te
n

cy

Time

a) Memory bandwidth b) Effective memory latency
Figure 10: Memory usage in VoltDB (TPC-C workload).

In-memory databases exploit architectural and application
trends to avoid many overheads commonly associated with
disk-based OLTP databases [12, 13, 15, 51]. VoltDB, one
such in-memory database, is an ACID-compliant, distributed
main memory relational database that implements the shared-
nothing architecture of H-Store [51].

Test details: For the results in this paper, we run the industry
standard TPC-C benchmark, which models the operations
of a wholesale product supplier [14]. We set the number
of warehouses to 512 and the number of sites in VoltDB
to 8, resulting in a 40GB memory footprint. The TPC-C
throughput is reported in total transactions per second.

Figure 11 shows that VoltDB’s performance is sensitive only
to memory latency, which can be explained by the high

Data structure %Size %Accesses Access pattern Benefit per region
%pointer %seq %random %writes

IDX ORDER LINE TREE 4.73 43.32 48.97 0.12 50.91 27.07 190.17
IDX S PK HASH 1.16 2.7 49.55 0.0 50.45 0.0 56.14

CUSTOMER 0.66 3.28 0.06 0.0 99.94 7.19 27.92
IDX O U HASH 0.52 0.17 3.01 0.0 96.99 69.33 5.99

STOCK 20.36 16.57 0.0 0.0 100.0 5.55 5.31
ORDER LINE 11.61 5.98 0.01 0.33 99.66 28.59 5.13

IDX OL PK HASH 5.73 1.69 8.68 0.95 90.37 55.89 4.81
HISTORY 0.94 0.25 2.03 0.0 97.97 56.51 4.27

IDX CUSTOMER NAME TREE 16.43 1.65 32.76 0.0 67.24 0.0 1.93
CUSTOMER NAME 35.90 0.59 0.0 0.0 100.0 0.0 0.11

Table 4: Memory tiering in VoltDB with the X-Mem API.

10

15

20

25

30

300-10 450-10 600-10 300-5 450-5 600-5

TP
S

(i
n

 t
h

o
u

sa
n

d
s)

NVM Latency(ns)-Bandwidth(GB/s)

DRAM-only NVM-only 1:16 1/4 1/2

0

20

40

60

80

100

25 50 75 100 125 150 175 200

%
 o

f
tr

an
sa

ct
io

n
s

Transaction latency (in ms)

DRAM-only NVM-only 1/16 1/2

0

1

2

3

4

300-10 450-10 600-10 300-5 450-5 600-5

N
o

rm
al

iz
ed

 p
er

f/
$

NVM Latency(ns)-Bandwidth(GB/s)

DRAM-only NVM-only 1:16 1/4 1/2

a) Tiering performance b) Transaction latency distribution at 600-5 c) Tiering performance/$
Figure 11: Evaluation of memory tiering in VoltDB.

effective latency – of over 50% at times (Figure 10b) –
caused by random accesses in VoltDB (particularly to the
indices). VoltDB consumes an average read bandwidth of
2.3GB/s and write bandwidth of only 1.3GB/s for the TPC-C
workload (Figure 10a), and is therefore insensitive to lower
bandwidth.

7.1 Data Structures and Placement

VoltDB scales by horizontally partitioning the tables across
multiple single-threaded engines (called sites) and replicat-
ing the partitions. We modify VoltDB to allocate indices and
tables using xmalloc. Overall, TPC-C in VoltDB contains
28 such data structures, of which the top 10 data structures
(size-wise) account for approximately 99% of the total mem-
ory footprint. Table 4 illustrates the application of X-Mem’s
placement algorithm to these top 10 data structures. Interme-
diate results and other data structures are allocated in DRAM
using the default system allocator.

Figure 11a shows that NVM-only’s performance is 26% to
51% worse than that of DRAM-only, a better situation than
Graphmat because TPC-C is comparatively less memory-
intensive. 1/16 performs better than NVM-only by 24% to
48%, by enabling X-Mem to place temporary data and three
frequently accessed data structures – tree-based secondary
index for the ORDER LINE table, hash-based primary index
for the STOCK table, and the small CUSTOMER table – in
DRAM. 1/8 (not shown here to avoid clutter) and 1/4 do
not perform much better than 1/16. At 1/2 X-Mem is able
to place all the data structures of VoltDB in DRAM, barring
the very large, but infrequently used, CUSOMTER NAME

table and some portions of the tree-based primary index for
the same table. As a result, 1/2’s performance is 35% to
82% better than NVM-only and only up to 9% worse than
DRAM-only.

Figure 11b shows the latency distribution of TPC-C trans-
actions, since it is an important metric for OLTP workloads.
Average transaction latency increases as we move to con-
figurations with more of the data in NVM. However the in-
crease is moderated by the placement algorithm that results
in transaction latencies close to that for DRAM even for a
1/16 configuration.

1/16’s performance/$ is better than DRAM-only by 2.5× to
3.7×, and best across most HMEP configurations. The only
exception is 300-10, where NVM-only provides better per-
formance/$ than 1/16. More importantly, all of the tiering
options offer better performance/$ than the DRAM-only op-
tion. 1/2’s performance/$ is, for instance, 1.5× to 1.7× bet-
ter than DRAM-only, while providing within 9% of DRAM-
only’s performance.

8. MemC3

Key-value stores are becoming increasingly important as
caches in large data centers [21]. We study a variation of
Memcached [10] called MemC3 [28] – a recent advance over
the open source Memcached that improves both memory
efficiency and throughput over the stock implementation.
MemC3 implements a variant of cuckoo hashing to avoid
expensive random dependent accesses that are common in
Memcached. In addition, MemC3 replaces Memcached’s

exclusive, global locking with an optimistic concurrency
control scheme.

0

3

6

9

12

15

B
an

d
w

id
th

 (
in

 G
B

/s
)

Time

Read Write

0

20

40

60

80

100

%
 o

f
p

h
ys

ic
al

 m
e

m
o

ry
 la

te
n

cy
Time

a) Memory bandwidth b) Effective memory latency
Figure 12: Memory usage in MemC3 (Facebook-like work-
load).

Test details: Key-value stores (such as Memcached and
MemC3) are used in widely different scenarios. Unlike with
OLTP databases, there is a lack of standard benchmarks for
key-value stores. We base our test workload on data recently
published by Facebook [21, 42], specifically on the ETC
trace.

To test MemC3 in a deterministic manner, we modified
memaslap [9] to implement separate load and execution
phases (similar to YCSB [16] but without requiring the
traces to be saved to a file). During the load phase, the
MemC3 server is populated with a dataset of approximately
64GB. The key size is fixed at 16 bytes and the size of the
values ranges from 16B to 8K, roughly following the distri-
bution of values in the ETC trace in Facebook’s published
data [21]. More than 90% of the values are 512 bytes or less
in size. However, values greater than 512 bytes occupy al-
most 50% of the cache space. The total memory footprint of
the workload is approximately 100GB.

During the execution phase, the client generates 50 million
random queries based again on the value distribution in the
ETC request trace. The workload is read heavy (95% GET
and 5% SET) and currently does not contain any DELETE
requests. We report the total time to complete the test.

Figures 12 shows the performance characterization of MemC3
with the client requesting values of one size at a time (from
16B to 8K). Figure 12a shows that MemC3’s read band-
width ranges from 1.8 GB/s to 14 GB/s and write bandwidth
ranges from 1 GB/s to 6.5 GB/s, depending on the size of
the value. Effective latency decreases (from 48% to 4%) at
larger values, due to improved sequential performance (Fig-
ure 12b).

MemC3’s sensitivity to higher latency rather than lower
bandwidth, as depicted by NVM-only’s performance in Fig-
ure 13a, is explained by the large skew towards the smaller
values in our workload. Figure 13b further illustrates this
fact by breaking down NVM-only’s overheads at various
value sizes.

8.1 Data Structures and Placement

MemC3 allocates memory for the cuckoo hash table at start-
up and employs a dynamic slab allocator to allocate values,
with the slab type determined by the size of allocation from
the slab. The hash table and the slabs are all allocated using
xmalloc, resulting in a total of nine data structures in X-Mem
(Table 5) since each slab type is treated as a separate data
structure. Table 5 shows the priorities of these data structures
as determined by the X-Mem placement algorithm. Note
that the priorities determined by X-Mem for the various slab
types fully follow the value-wise breakdown of NVM-only’s
overhead in Figure 13b, demonstrating the accuracy of X-
Mem placement model.

Table 5 also shows why the frequency of accesses to a data
structure alone is insufficient for determining the benefit of
placing it in faster memory. The cuckoo hash and 256B, for
instance, are relatively close both in terms of their access
frequencies and memory footprint, but contrast in terms of
benefit per memory region due to their different access pat-
terns.

Figure 13a shows that, depending on the HMEP configu-
ration, NVM-only’s performance is 1.15× to 1.45× worse
than that of DRAM-only. With 1/8 tiering, where only 12.5%
of the application data is in DRAM, performance improves
by 8% to 17% over NVM-only because X-Mem allocates
MemC3’s cuckoo hash DRAM. 1/4 fares even better and
improves the performance to within 6% to 13% of DRAM-
only, mainly because X-Mem is now able to place a large
number of small values in DRAM and reduce the number of
random accesses to NVM.

Increasing the amount of available DRAM beyond 1/4 re-
sults in incremental improvements, and eventually at 1/2,
performance overhead over DRAM-only is within 5%.
However, this improvement comes at much higher cost as
depicted in Figure 13c. NVM-only provides best perfor-
mance/$ across all HMEP configurations – 3.5× to 4.5×
compared to DRAM-only, mainly because the NVM-only
overhead is relatively low. Finally, all tiering options pro-
vide significantly better performance/$ (1.6× to 3.1×) than
DRAM-only, resulting in a range of interesting perfor-
mance/cost tradeoffs.

9. Practical Deployment

X-Mem is intended for deployment with soon to be intro-
duced NVM based systems [30]. Therefore, design choices
in X-Mem were made with the following practical consider-
ations.

Data structure %Size %Requests %Accesses Access pattern Benefit per region
%pointer %seq %random %writes

Cuckoo hash 12.35 NA 17.65 21.15 0.0 78.85 3.44 83.76
16B, 32B, 64B 8.64 55.0 23.51 0.0 0.0 100.0 18.63 70.53

256B 18.52 16.0 16.29 0.0 0.0 100.0 13.37 22.77
128B 16.05 24.0 8.48 0.0 0.0 100.0 15.41 13.7

4096B 6.17 2.0 10.47 0.0 91.95 8.05 4.98 13.3
512B 4.32 1.0 2.01 0.0 21.02 78.98 10.98 10.35

1024B 4.94 1.0 3.41 0.0 72.21 26.79 6.78 9.01
2048B 10.49 0.7 7.67 0.0 86.5 13.5 5.49 7.7
8192B 18.52 0.3 10.5 0.0 94.32 5.68 4.49 5.11

Table 5: Memory tiering in MemC3 with the X-Mem API.

20

25

30

35

300-10 450-10 600-10 300-5 450-5 600-5

Ti
m

e
(i

n
 s

ec
o

n
d

s)

NVM Latency(ns)-Bandwidth(GB/s)

DRAM-only NVM-only 1/8 1/4 1/2

0

5

10

16B 32B 64B 128B 256B 512B 1K 2K 4K 8K

Ti
m

e
(i

n
 s

ec
o

n
d

s)

Value size

DRAM-only NVM-only 1/8 1/4

0

1

2

3

4

5

300-10 450-10 600-10 300-5 450-5 600-5

N
o

rm
al

iz
ed

 p
er

f/
$

NVM Latency(ns)-Bandwidth(GB/s)

DRAM-only NVM-only 1/8 1/4 1/2

a) Tiering performance b) Tiering performance breakdown c) Tiering performance/$
Figure 13: Evaluation of memory tiering in MemC3.

9.1 Human Overhead

X-Mem offers a powerful yet simple API for applications
to express important semantic information about their data.
While replacing malloc and free with xmalloc and xfree
is straightforward, assigning unique tags to individual data
structures might require more effort depending on the imple-
mentation. In our case, modifying VoltDB required the most
effort, but still involved changes to under 50 lines of code.
The effort is considerably lower for object oriented programs
where a class-specific allocator can be defined for calling
xmalloc, rather than scattering those calls across the code.
While the process is not onerous, it still requires manual ef-
fort and a good understanding of application source code.
We plan to explore techniques to automatically tag the dy-
namic allocation of application data structures, at the least in
the context of managed languages and runtimes [24, 32, 50].

Beyond tagging application data, no further effort or reason-
ing is necessary on the part of the programmer since the au-
tomatic placement algorithm does a job at least as good as a
human programmer in placing data structures. To verify this
claim, we repeated the experiments with other possible or-
derings of data structures for placement in DRAM. In case
of VoltDB and MemC3, because of the large number of data
structures, we selected a subset of the possible permutations
that we deemed most optimal; for instance, based on the ac-
cess frequencies alone and/or our understanding of the ap-
plications. For Graphmat we evaluated all possible permuta-
tions. In no case were we able to outperform our automatic
placement algorithm. For example, with GraphMat, we were
able to run all possible permutations for placement, with one
instance (1/16 tiering at 600-5), showing that the placement

model’s suggestion was 1.0× to 5.8× better than the alter-
natives.

9.2 Profiling Overhead

Memory tracing (with Pin) during the profiling step can
significantly slow down the application (up to 40× in our
tests), and is therefore suited only for offline use and not
for production. One option that we considered is to employ
sampling based profiling [55]. The idea was shelved due
to concerns that sampling profilers may fail to capture re-
lationships between closely spaced memory accesses such
as pointer chasing and strided scans. We are currently ex-
ploring extensions to the x86 ISA that would enable neces-
sary profiling but without the expensive process of tracing
each memory access. Such hardware extensions would en-
able real-time measurement and placement in X-Mem. The
profiler however remains the solution for initial deployment.

We also found that it is useful to downsize the workload
while preserving the relation between its various data struc-
tures, in order to reduce the time spent in profiling. For in-
stance, in the case of MemC3, we resize the number of val-
ues and the number of requests in the workload proportion-
ately to the original distribution.

9.3 Device Wear

Device wear is a significant concern for the initial genera-
tion of NVM devices. With X-Mem based tiering, the appli-
cations and OS continue to use DRAM from the default sys-
tem allocator for small temporary data and program stack,
while X-Mem prioritizes the use of the remaining DRAM

Region Size 64M-S 512M-S 1G-S 1G-L
Time (in ms) 1015 972 924 378

Table 6: Time taken to migrate one gigabyte of application
data from DRAM to NVM (at 600-5). S and L denote the use
of 4K pages and 1G pages respectively.

for frequently used important application data. In that re-
gard, X-Mem acts as a natural guard against wear by mov-
ing the most frequently accessed (and written) data struc-
tures to DRAM. Figure 14 shows that, depending on the mix
of DRAM and NVM, X-Mem reduces writes to NVM by
48% to 98% (over NVM-only) in the applications evaluated
in this paper.

0

20

40

60

80

100

MemC3 VoltDB GraphMat

%
 o

f
w

ri
te

s
to

 N
V

M

NVM-only 1/32 1/16 1/8 1/4 1/2

Figure 14: Writes to NVM as a percentage of total writes
This work prioritizes performance over reducing wear, but
it is possible to configure X-Mem to instead prioritize write-
intensive data structures for placement in DRAM. The actual
device wear, like performance, would depend on a number of
factors – the granularity of wear-leveling, presence of power
fail-safe DRAM buffers in NVM device, etc. As part of our
future research, we plan to measure the effect of tiering on
device wear and the total cost of ownership.

9.4 Migration Overhead

X-Mem performs “synchronous” migration by waiting for
the mbind call to return when a memory region is migrated
from DRAM to NVM. The overhead of this migration is
negligible in our experiments due to the relatively small
amount of time spent in allocations compared to the overall
run time of the application.

Table 6 shows the raw overhead of migration for region sizes
ranging from 64M to 1G. 1G regions can amortize the cost
of migration by 5% to 8% over smaller regions. The real
benefit of using 1G regions however is that it allows the
use of large (one gigabyte) hardware pages on most 64-bit
servers; thereby further reducing the migration overhead by
60% compared to the baseline with 4K pages (1G-S). While
we understand the benefits of using 1G regions with large
pages in applications with large memory footprint [27], the
current implementation of X-Mem uses 64 MB regions (by
default) to reduce internal fragmentation. Also, X-Mem uses
4K hardware pages due to limitations in the Linux kernel
w.r.t. enforcement of memory policies on large pages. We
plan to address this situation in the future.

10. Related Work

Qureshi et al. [46] propose a 2-level memory (2LM) architec-
ture where DRAM is used as transparent hardware managed
cache to NVM. We focus only on software managed hybrid
memory systems and techniques to achieve optimal perfor-
mance with them.

Lim et al. [35] study the use of slow memory in the context
of shared, network-based (disaggregated) memory and con-
clude that a fast paging-based approach performs better than
direct access to slow memory. While their choice of target
applications is key to their findings, their work also relies on
a simple processor model that does not account for CPU’s
MLP. In our experiments, we found that paging to NVM is
several times slower than even the corresponding NVM-only
solutions. Others have made similar observations regarding
the performance of paging in Linux [17].

AutoNUMA monitors memory usage of applications in
NUMA platforms and co-locates their memory with com-
pute (via scheduling and migration) for optimal perfor-
mance [3]. Data co-location in NUMA platforms, however,
is very different from data placement in hybrid memory sys-
tems, where NVM is slow to access from all computations.
AutoNUMA does not solve the problem of matching appli-
cation data with physical memory.

NVML is an open source implementation of allocators and
abstractions optimized for NVM, both for persistent and
volatile usage [11]. Like X-Mem, one of the goals of NVML
is to exploit NVM’s capacity and cost attributes. But, X-
Mem’s objectives go beyond that of NVML. For one, X-
Mem alleviates applications from the responsibility of un-
derstanding the system’s topology, properties of memories,
data migration at runtime, etc. Second, application-driven
memory tiering with X-Mem has much broader scope and
the X-Mem runtime can be extended to support any future
hybrid system irrespective of the memory technology [6, 7].

SSDAlloc is a hybrid memory manager with a custom API
that enables applications to use flash-based SSDs as an ex-
tension of DRAM [22]. In comparison, X-Mem is designed
for hybrid memory systems where all memories are directly
accessible to software and there are no overheads related to
block-based accesses.

Data classification is a well-studied problem in the context
of traditional block-based storage [5, 40, 49]. Mesnier et
al. [40] propose the classification of I/O data at block granu-
larity to enable differentiated storage services (DSS) for tra-
ditional file and storage systems. A DSS classifier is inter-
nally translated to a relative priority based on a pre-defined
policy that was assigned to the file by software. Data clas-
sification in X-Mem is finer grained and preserves seman-
tic information at the granularity of a single allocation. As
a result, X-Mem enables optimal data placement between

memories whose performance is not necessarily orders of
magnitude apart.

An alternative to dynamic tracing of memory accesses is
static analysis to determine the access pattern to various
data structures. However, since we target unmanaged lan-
guages, static analysis would require some form of “points-
to-analysis” [50] to map memory accesses through pointers
to the actual types that they refer to. Since points-to-analysis
is necessarily conservative it leads to situations where an ac-
cess maps to more than one type or data structure, there-
fore resulting in inaccurate attribution of accesses. In addi-
tion static analysis does not give dynamic access counts; for
example, the number of accesses within loops whose iter-
ation count is input dependent. Dynamic access counts are
critical to the model we use for placement decisions.

Linux allows applications to provide hints about their use
of virtual memory using the madvise system call [8]. The
OS is free to act on or ignore those hints. Jantz et al. [31]
propose a page coloring framework for applications to dy-
namically attach an intent to a group of pages. The applica-
tions and OS collaborate in a feedback loop to execute on (or
fine tune) the intents. Others have demonstrated the benefits
of profile guided page placement in high performance GPU
kernels with a small number of (usually large) statically al-
located data structures [18]. Since the target applications in
that work are mostly bandwidth bound, the focus is on hy-
brid memory systems with high-bandwidth memory [36] and
regular DDR-DRAM, and on exposing the bandwidth asym-
metry between these memories. Our work differs from these
efforts in many ways. For one, all of these existing mecha-
nisms operate at the granularity of (at least) a page in vir-
tual memory, but applications allocate memory for one ob-
ject (often smaller than a page) at a time. X-Mem preserves
this semantic information by operating at the allocator level
and by using tags for application data structures. Secondly,
the profiling techniques in the previous efforts assume ho-
mogeneous (bandwidth optimized) accesses to all applica-
tion data, and therefore use the frequency of accesses to data
as the proxy for their relative importance. X-Mem makes
no such assumptions, and is aware of the fact that both the
frequency and the actual access pattern matter. Therefore,
X-Mem is more general purpose. Finally, unlike previous
work, X-Mem takes a holistic approach towards data place-
ment and runtime management (e.g., dynamic migration), all
the while exploiting the additional information provided by
the applications.

Prior work has examined the use of NVM in a hybrid archi-
tecture as CPU addressable persistent memory. For instance,
PMFS is a lightweight file system optimized for NVM. In
addition to supporting regular file system interface, PMFS
provides applications with direct access to NVM with the
mmap interface [27]. Some researchers have proposed per-
sistent programming models for applications that require

consistent, low-overhead access to NVM [25, 53, 54]. Oth-
ers are exploring systems (particularly databases) that are
partially or completely redesigned for NVM [20, 43, 56]. X-
Mem is complementary to these efforts.

11. Conclusion

Future systems are likely to address scalability and cost lim-
itations of DRAM with hybrid memory systems containing
DRAM and Non-Volatile Memories (NVM) such as PCM
and RRAM. This paper proposes data classification and tier-
ing techniques for best matching application data with un-
derlying memory types in hybrid systems. We consider three
large in-memory server workloads – MemC3, VoltDB, and
GraphMat. In a hybrid system with only a small amount of
DRAM (6% of the memory footprint for GraphMat, 25% for
MemC3 and VoltDB), applying data tiering to these work-
loads improves their performance by as much as 22% to 76%
over the corresponding unmodified versions. At the same
time, these tiered applications perform merely 13% to 40%
worse than their counterparts running entirely in DRAM,
thus achieving 2× to 2.8× better performance/$. Service
providers can use the data tiering techniques in this paper to
enable a range of differentiated services in hybrid memory
systems.

Acknowledgments

We thank Sergiu Gheti, Sanjay Kumar, Anil Keshavamurthy
and Narayan Ranganathan for their valuable contributions to
the emulator. We thank Michael Mesnier for his valuable in-
sights and reviews of the paper. We thank Vish Viswanathan
for helping with performance characterization and Bin Fan
for answering our questions related to MemC3. Finally, we
thank the anonymous Eurosys reviewers and our shepherd
Nathan Bronson for their help towards improving the paper.

References

[1] https://en.wikipedia.org/wiki/3D_XPoint.
[2] https://github.com/jemalloc.
[3] AutoNuma. https://www.kernel.org/pub/

linux/kernel/people/andrea/autonuma/
autonuma_bench-20120530.pdf, 2012.

[4] Crossbar Resistive Memory: The Future Tech-
nology for NAND Flash. http://www.
crossbar-inc.com/assets/img/media/
Crossbar-RRAM-Technology-Whitepaper-080413.
pdf, 2013.

[5] fadvise - Linux man page. http://linux.die.net/
man/2/fadvise, 2014.

[6] The Machine from HP. http:
//www8.hp.com/hpnext/posts/
discover-day-two-future-now-machine-hp#
.U9MZNPldWSo, 2014.

[7] Intel Xeon Phi (Knights Landing) Architectural
Overview. http://www8.hp.com/hpnext/posts/
discover-day-two-future-now-machine-hp#
.U9MZNPldWSo, 2014.

[8] madvise - Linux man page. http://linux.die.net/
man/2/madvise, 2014.

[9] Memaslap. http://docs.libmemcached.org/bin/
memaslap.html, 2014.

[10] Memcached - a distributed memory object caching system.
http://memcached.org, 2014.

[11] NVM Library. http://pmem.io/nvml, 2014.
[12] Oracle Database In-Memory. http:

//www.oracle.com/technetwork/
database/in-memory/overview/
twp-oracle-database-in-memory-2245633.
html, 2014.

[13] SAP HANA for Next-Generation Business Ap-
plications and Real-Time Analytics. http:
//www.saphana.com/servlet/JiveServlet/
previewBody/1507-102-3-2096/SAP\%20HANA\
%20Whitepaper.pdf, 2014.

[14] TPC-C. http://www.tpc.org/tpcc, 2014.
[15] VoltDB. http://voltdb.com/downloads/

datasheets_collateral/technical_overview.
pdf, 2014.

[16] Yahoo Cloud Serving Benchmark (YCSB).
http://labs.yahoo.com/news/
yahoo-cloud-serving-benchmark, 2014.

[17] Improving page reclaim. https://lwn.net/
Articles/636972, 2015.

[18] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and
S. W. Keckler. Page Placement Strategies for GPUs Within
Heterogeneous Memory Systems. In Proceedings of the Twen-
tieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’15, 2015.

[19] Amazon. Supermicro Certified MEM-DR432L-SL01-LR21
Samsung 32GB DDR4-2133 4Rx4 LP ECC LRDIMM Mem-
ory, 2015.

[20] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s Talk About Stor-
age & Recovery Methods for Non-Volatile Memory Database
Systems. In Proceedings of the 2015 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’15,
2015.

[21] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload Analysis of a Large-scale Key-
value Store. In Proceedings of the 12th ACM SIGMETRIC-
S/PERFORMANCE Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS
’12, 2012.

[22] A. Badam and V. S. Pai. SSDAlloc: Hybrid SSD/RAM Mem-
ory Management Made Easy. In Proceedings of the 8th
USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’11, 2011.

[23] S. Brin and L. Page. The Anatomy of a Large-scale Hypertex-
tual Web Search Engine. In Proceedings of the Seventh Inter-
national Conference on World Wide Web 7, WWW7, 1998.

[24] P. Cheng, R. Harper, and P. Lee. Generational Stack Col-
lection and Profile-driven Pretenuring. In Proceedings of the
ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation, PLDI ’98. ACM, 1998.

[25] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making Persis-
tent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, 2011.

[26] J. DeBrabant, J. Arulraj, A. Pavlo, M. Stonebraker, S. Zdonik,
and S. Dulloor. A prolegomenon on OLTP database systems
for non-volatile memory. In ADMS@VLDB, 2014.

[27] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz,
D. Reddy, R. Sankaran, and J. Jackson. System Software for

Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, 2014.

[28] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and Concurrent MemCache with Dumber Caching and
Smarter Hashing. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementation,
nsdi’13, 2013.

[29] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: Distributed Graph-parallel Computation on Nat-
ural Graphs. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI’12,
2012.

[30] Intel. 3d x-point press announcement. http://
newsroom.intel.com/docs/DOC-6713, 2015.

[31] M. R. Jantz, C. Strickland, K. Kumar, M. Dimitrov, and K. A.
Doshi. A Framework for Application Guidance in Virtual
Memory Systems. In Proceedings of the 9th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, VEE ’13, 2013.

[32] M. Jump, S. M. Blackburn, and K. S. McKinley. Dynamic
Object Sampling for Pretenuring. In Proceedings of the 4th
International Symposium on Memory Management, ISMM
’04, 2004.

[33] H. Kim, S. Seshadri, C. L. Dickey, and L. Chiu. Evaluat-
ing Phase Change Memory for Enterprise Storage Systems: A
Study of Caching and Tiering Approaches. In Proceedings of
the 12th USENIX Conference on File and Storage Technolo-
gies, FAST’14, 2014.

[34] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,
a Social Network or a News Media? In Proceedings of the
19th International Conference on World Wide Web, WWW
’10, 2010.

[35] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt,
and T. F. Wenisch. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of the 36th
Annual International Symposium on Computer Architecture,
ISCA ’09, 2009.

[36] G. H. Loh. 3D-Stacked Memory Architectures for Multi-core
Processors. In Proceedings of the 35th Annual International
Symposium on Computer Architecture, ISCA ’08, 2008.

[37] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumen-
tation. In Proceedings of the Conference on Programming
Language Design and Implementation, pages 190–200. ACM,
2005.

[38] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’10, 2010.

[39] J. Malicevic, S. R. Dulloor, N. Sundaram, N. Satish, J. Jack-
son, and W. Zwaenepoel. Exploiting nvm in large-scale graph
analytics. In Proceedings of the 3rd Workshop on Interactions
of NVM/FLASH with Operating Systems and Workloads, IN-
FLOW ’15, 2015.

[40] M. P. Mesnier and J. B. Akers. Differentiated Storage Ser-
vices. SIGOPS Oper. Syst. Rev., 45(1), Feb. 2011.

[41] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, 2013.

[42] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee,
H. C. Li, R. McElroy, M. Paleczny, D. Peek, P. Saab,
D. Stafford, T. Tung, and V. Venkataramani. Scaling Mem-
cache at Facebook. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementation,
nsdi’13, 2013.

[43] I. Oukid, D. Booss, W. Lehner, P. Bumbulis, and T. Willhalm.
SOFORT: A Hybrid SCM-DRAM Storage Engine for Fast
Data Recovery. In Proceedings of the Tenth International
Workshop on Data Management on New Hardware, DaMoN
’14, 2014.

[44] I. Oukid, W. Lehner, K. Thomas, T. Willhalm, and P. Bumbu-
lis. Instant Recovery for Main-Memory Databases. In Pro-
ceedings of the Seventh Biennial Conference on Innovative
Data Systems Research, CIDR ’15, 2015.

[45] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Lev-
erich, D. Mazières, S. Mitra, A. Narayanan, G. Parulkar,
M. Rosenblum, S. M. Rumble, E. Stratmann, and R. Stutsman.
The Case for RAMClouds: Scalable High-performance Stor-
age Entirely in DRAM. SIGOPS Oper. Syst. Rev., 43(4), Jan.
2010.

[46] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scal-
able High Performance Main Memory System Using Phase-
change Memory Technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture,
ISCA ’09, 2009.

[47] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-
centric Graph Processing Using Streaming Partitions. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, 2013.

[48] N. Satish, N. Sundaram, M. M. A. Patwary, J. Seo, J. Park,
M. A. Hassaan, S. Sengupta, Z. Yin, and P. Dubey. Navigating
the Maze of Graph Analytics Frameworks Using Massive
Graph Datasets. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’14, 2014.

[49] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Semantically-Smart Disk Systems. In Proceedings of the 2Nd
USENIX Conference on File and Storage Technologies, FAST
’03, 2003.

[50] B. Steensgaard. Points-to Analysis in Almost Linear Time. In
Proceedings of the Symposium on Principles of Programming
Languages. ACM, 1996.

[51] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The End of an Architectural Era:
(It’s Time for a Complete Rewrite). In Proceedings of the 33rd
International Conference on Very Large Data Bases, VLDB
’07, 2007.

[52] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor,
S. G. Vadlamudi, D. Das, and P. Dubey. GraphMat: High
performance graph analytics made productive. http://
arxiv.org/abs/1503.07241, 2015.

[53] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Camp-
bell. Consistent and Durable Data Structures for Non-
volatile Byte-addressable Memory. In Proceedings of the
9th USENIX Conference on File and Stroage Technologies,
FAST’11, 2011.

[54] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Six-
teenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XVI, 2011.

[55] X. Yang, S. M. Blackburn, and K. S. McKinley. Computer per-
formance microscopy with shim. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture,
ISCA ’15. ACM, 2015.

[56] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim: A
Reliable and Highly-Available Non-Volatile Memory System.
In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS ’15, 2015.

