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Introduction

I Cyber-physical systems are embedded in physical environments
and exert control via computation and devices.
I Intelligent Hospitals and Smart Homes
I Automated Highway Systems
I Smart Grids and Renewable Energy

Smart Home Example

I Design goal: Maintain the room temperature within 19-21C.
I Data from Sensors; Control of Heaters
I Model: joint dynamics of physics and logic
I Interesting modeling questions:

I Verification, Monitoring, Security, Optimization

Modeling

I Hybrid automata [1, 3]: model the joint dynamics of continuous,
physical processes and discrete, control signals
I Discrete states: Q = {q1, q2, · · · }
I Continuous states: X ⊆ Rn

I Vector field: f : Q × X → X
I Edges: E ⊆ Q × Q
I Guard condition: G : E → 2X

I Sequence of intervals: τ = {I0, I1, · · · }
I Hybrid trajectory is (τ, q, x) = ({Ii}N

0 , {qi}N
0 , {xi}N

0 ) where
I Time interval: Ii = [τi, τ

′
i ]

I Discrete state function: qi : Ii → Q
I Continuous state function: xi : Ii → X

I Execution:
I Discrete dynamics: ∀i : (qi(τ

′), qi+1(τ )) ∈ E , xi(τ
′) ∈ G(qi(τ

′), qi+1(τ ))
I Continuous dynamics: ∀i

I qi is constant over Ii
I xi is the solution to ẋi = f (qi(t), xi(t)) over Ii

Learning

I How to learn an accurate model of the physical and logical
components based only on data?

I Physical dynamics: learn the physical laws
I Logical dynamics: learn the finite automata
I Complete data likelihood:

Pr(X ,Q|θ) =

Pr(X0,Q0|θ)
∏
t=1

Pr(Xt|Qt,Xt−1, θ) Pr(Qt|Qt−1,Xt−1, θ)

I Useful for statistical inference on modeling questions.
I Extension beyond Hidden Markov Chain and Hybrid Dynamical

Systems
I Complex relationships in physical states and combinatorial space

of discrete states

Learning of physical processes

I Given time series of physical quantity {x}T and control signal

{q}T , estimate parameter Ad =

[
A1

A2

]
.

I Assume physical processes are linear dynamical systems:

ẋ = Ady + ε where y =

[
x
q

]
and ε ∼ N (0, σ2)

I This can be discretized using linear approximation:

xt+1 = Ayt + ∆tεt where A =

[
∆tA1 + I

A2

]
I A can be estimated using maximum likelihood estimation [2]:

Â = Σ1Σ−1
0

where

Σ0 =
1

T − 1

∑
t

ytyT
t and Σ1 =

1
T − 1

∑
t

yt+1yT
t

I Finally, Âd = (Â− I)/∆t

Learning of discrete dynamics

I Given time series of physical quantity {x}T and control signal
{q}T , estimate distribution of next states:

Pr(qt+1|xt, qt,w) with parameter w
I Assume logical dynamics are finite automata with linear constraints

w ·
[
x
1

]
≥ 0

I Find the decision boundary in the space of x using large-margin
estimation:

min ‖w‖2
2

subject to

∀t : δ(qt+1, qt, xt) ·
(

w ·
[
xt
1

])
≥ 1

where

δ(qt+1, qt, xt) =

{
1 if transits to qt+1

−1 else

Next steps

I Evaluate on various real-world systems
I Consider relationships in continuous and discrete variables
I Partial observations, missing data and different forms of noise
I Formulate a learning method using mixed-variable graphical

models
I Privacy issues

Conclusion

I Formulate the learning problem of cyber-physicl systems as
learning the continuous and discrete dynamics

I Present the first solution using least-square maximum likelihood
estimation and large margin estimation.

I Open source implementation in Julia:
https://github.com/zheguang/cyber-physical-learn
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