
Approximate Trigonometric
Functions in GPGPU

sam@cs.brown.edu
Dec 15, 2015

Advanced Computer Architecture

mailto:sam@cs.brown.edu

Outline

• Background

• Precise approximate trigonometric functions in
GPGPU

• Our approximation approaches

• Experiments

Background
• Many emerging applications do not require perfect executions

[1].

• Input data is inexact

• sensor data

• Multiple acceptable outputs

• machine learning algorithms

• Imprecise output

• Image rendering, sound and video processing

Energy

Performance

Accuracy

• Goal: trade off accuracy
for additional energy
savings and performance
gain.

Errors Energy

Errors Energy Perf.

Perf.

Approximate Trigonometric
Functions

• Computer arithmetics are finite sequence of
algebraic operations (add, multiply, root)

• Transcendental functions like sin, cos and exp
cannot be expressed in finite sequence of
algebraic operations.

• Traditionally high precision approximation routines
in either software or recently in hardware.

CUDA Maths Library: software-level high precision approximation

Linker

GPU Hardware Routines: Intrinsic functions

GCC for PTX target

PTX Instructions

GPU

GTX480 (Fermi)
IntrinsicCUDA Lib

Our Approach
• What can we improve upon?

• Current software or hardware approaches focus on
precise approximation.

• Can we trade off precision for energy savings and/or
performance gain?

• Simplification of computation

• Approximate ALU (SFU)

• Approximate CUDA Maths Lib

• Chebychev Approximation [4]

• find polynomial of degree <=
n to minimize maximum error.

• Chebychev Polynomials [4]

• good set of nodes for
polynomial interpolation

• interpolation error bound

• Use Remez Algorithm [5] to
calculate offline (e.g. by the
compiler).

• Solve linear system of
equations.

• Our specific optimization:
• Sine is odd function, can use odd polynomials to achieve

better approximation with the similar computation.
• Can trade off error bound with faster Remez runtime.

Experiments with GPGPU-Sim and GPUWattch

• Comparisons
• HW

• Intrinsic Approx
• Intrinsic Precise

• SW
• Cuda-lib Precise
• Cuda-lib Approx (missing)

• Benchmark: Parboil, MRI-Q [6].
• Result of Intrinsic Approx

• 5.5x speedup over Cuda-lib Precise
• 1.2x speedup over Intrinsic Precise.
• Power consumption from 185% in

Intrinsic Precise to 125% compared
to Cuda-lib Precise.

Reference
1. https://homes.cs.washington.edu/~luisceze/ceze-approx-overview.pdf

2. Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, Tor M. Aamodt, Analyzing
CUDA Workloads Using a Detailed GPU Simulator, in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Boston, MA,April 19-21, 2009.

3. http://www.nvidia.com/content/pdf/fermi_white_papers/p.glaskowsky_nvidia's_fermi-
the_first_complete_gpu_architecture.pdf

4. https://en.wikipedia.org/wiki/Chebyshev_nodes

5. https://en.wikipedia.org/wiki/Remez_algorithm

6. John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid,vLi-Wen Chang, Nasser
Anssari, Geng Daniel Liu, Wen-mei W. Hwu. IMPACT Technical Report, IMPACT-12-01,
University of Illinois, at Urbana-Champaign, March 2012

https://homes.cs.washington.edu/~luisceze/ceze-approx-overview.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/p.glaskowsky_nvidia's_fermi-the_first_complete_gpu_architecture.pdf
https://en.wikipedia.org/wiki/Chebyshev_nodes
https://en.wikipedia.org/wiki/Remez_algorithm

