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Background
• Many emerging applications do not require perfect executions 

[1]. 

• Input data is inexact 

• sensor data 

• Multiple acceptable outputs 

• machine learning algorithms 

• Imprecise output 

• Image rendering, sound and video processing



Energy

Performance

Accuracy

• Goal: trade off accuracy 
for additional energy 
savings and performance  
gain. 

Errors Energy

Errors Energy Perf.
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Approximate Trigonometric 
Functions

• Computer arithmetics are finite sequence of 
algebraic operations (add, multiply, root) 

• Transcendental functions like sin, cos and exp 
cannot be expressed in finite sequence of 
algebraic operations. 

• Traditionally high precision approximation routines 
in either software or recently in hardware.



CUDA Maths Library: software-level high precision approximation

Linker



GPU Hardware Routines: Intrinsic functions

GCC for PTX target

PTX Instructions

GPU



GTX480 (Fermi)
IntrinsicCUDA Lib



Our Approach
• What can we improve upon? 

• Current software or hardware approaches focus on 
precise approximation. 

• Can we trade off precision for energy savings and/or 
performance gain? 

• Simplification of computation 

• Approximate ALU (SFU) 

• Approximate CUDA Maths Lib



• Chebychev Approximation [4] 

• find polynomial of degree <= 
n to minimize maximum error. 

• Chebychev Polynomials [4] 

• good set of nodes for 
polynomial interpolation 

• interpolation error bound 

• Use Remez Algorithm [5] to 
calculate offline (e.g. by the 
compiler). 

• Solve linear system of 
equations.



• Our specific optimization: 
• Sine is odd function, can use odd polynomials to achieve 

better approximation with the similar computation. 
• Can trade off error bound with faster Remez runtime.



Experiments with GPGPU-Sim and GPUWattch

• Comparisons 
• HW 

• Intrinsic Approx 
• Intrinsic Precise 

• SW 
• Cuda-lib Precise 
• Cuda-lib Approx (missing)

• Benchmark: Parboil, MRI-Q [6]. 
• Result of Intrinsic Approx  

• 5.5x speedup over Cuda-lib Precise 
• 1.2x speedup over Intrinsic Precise. 
• Power consumption from 185% in 

Intrinsic Precise to 125% compared 
to Cuda-lib Precise.
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