Approximate Irigonometric
Functions in GPGPU

sam@cs.brown.edu
Dec 15, 2015
Advanced Computer Architecture

mailto:sam@cs.brown.edu

Outline

Background

Precise approximate trigonometric functions in
GPGPU

Our approximation approaches

Experiments

Background

 Many emerging applications do not require perfect executions

[1].
e |Input data is inexact
* sensor data
e Multiple acceptable outputs
 machine learning algorithms
* Imprecise output

* Image rendering, sound and video processing

 (Goal: trade off accuracy
for additional energy
savings and performance

gain.
\ Errors Energy Pert.
Pertormance
Energy] fae . .
Accuracy

Errors Energy Perf.

Approximate lrigonometric
FuNnctions

e Computer arithmetics are finite sequence of
algebraic operations (add, multiply, root)

* Transcendental functions like sin, cos and exp
cannot be expressed in finite sequence of
algebraic operations.

e [raditionally high precision approximation routines
N either software or recently in hardware.

CUDA Maths Library: software-level high precision approximation

{ {
int idx = blocklIdx X * prLockvin .X + threadldx.x; #if _ CUDA_ARCH__ >= 200
} x2 = __fmul_rn (x, x);
if gl

2.44331571e-57;
__internal_fmad 1.38873163e~3f);

\

1.95152959e~-4f;

z = __internal_fmad (z, x2, 8.33216087e-3f);
}
. . . . , if (1&1) {
static __forceinline__ float __internal_accurate_sinf(float 2 = internal fmad (z, x2, 4.16666457e-2f);
{ z = __internal_fmad (z, x2, -5.00000000e-1f);
float z; } else {
int i; z = __internal_fmad (z, x2, -1.66666546e~1f);
z = __internal_fmad (z, x2, 0.0f);
. .. }
if (_isinff(a)) { x = __internal_fmad (z, x, Xx);
a =__fmul_rn (a, CUDART_ZERO_F); if (1 & 1) x = __internal_fmad (z, x2, 1.0f);
if (i & 2) x = __internal_fmad (x, -1.0f, CUDART_ZERO_F);
__internal_trig_reduction_kernel(a, &i) #else /x __CUDA_ARCH__ >= 200 */
__internal_sin_cos_kernel(a, 1i); if (1&1){
— - x = __internal_cos_kernel(x);
— - — } else {
if (a == CUDART_ZERO_F) { x = __internal_sin_kernel(x);
z = __fmul_rn (a, CUDART_ZERO_F); }
y if (i & 2) {
#endif /* CUDA ARCH < 200 %/ x = __internal_fmad (x, -1.0f, CUDART_ZERO_F);
return z; } .
#endif /* _ CUDA_ARCH__ >= 200 »
} return Xx;

}

GPU Hardware Routines: Intrinsic functions

__global__ void sin_array(float *a, int N)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x:

if (idx<N) alidx] | __sinf(a[idx]);

}

GCC for PTX target

$LDWbegin__Z9sin_arrayPfi:
mov.ul6 %rhl, %sctaid.x;
mov.ulé6 %rh2, %sntid.Xx;
mul.wide.ulb %rl, %srhl, S%rh2;
cvt.u32.ulb %r2, %tid.x;
add.u32 %r3, %r2, %rl;
ld.param.s32 %r4, [__cudaparm__Z9sin_arrayPfi_N];
setp.le.s32 %pl, %rd, %r3; GPU
@%spl bra $Lt 1 1026; —
. LOC 16 19 0
ld.param.u64 %rdl, [__cudaparm__Z9sin_arrayPfi_al;
cvt.s64.s532 %Srd2, %r3;
mul.wide.s32 rd3, %r3, 4;
add.u64 %rd4, %srdl, S%rd3;

~~— o~ - -~ LN . -
.
WY LlUVU L T U 01 A L*ouu#l@],

sin.approx.f32 %f2, %f1l;

— L L e Nl N ’'a 44 .01 nf2.
ot S

U\-Iv‘vv\ﬂt'lv- B VY ww v Y w g3)

PTX Instructions

G TX480 (Fermi

Warp Scheduler Warp Scheduler

Instruction Dispatch U CUDA Lib ‘truc Intrinsic

= = = = 4 I N O O O --a- g -‘ I

- I e
! | FADD " I LD |
I FADD | I RcP |
I FFMA FFMA i I

I IADD IADD bl I

0 MOV I 0 LD
W-HH FFMA i SIN

i IADD ICMP I .

1| FFMA B I ! gR

. | FEMA | IADD nl |

i T

~ = JFigure7. Atotal of 32 instructions from ope or twq warps can be dispatched in each cycle

to any two of the four execution blocks within a Fermi SM: two blocks of 16 cores each, one
block of four Special Function Units, and one block of 16 load/store units. This figure shows
how instructions are issued to the execution blocks. (Source: NVIDIA)

Our Approach

 What can we improve upon”

e Current software or hardware approaches focus on
precise approximation.

 Can we trade off precision for energy savings and/or
performance gain?

e Simplification of computation
e Approximate ALU (SFU)

* Approximate CUDA Maths Lib

* Chebychev Approximation [4]

* find polynomial of degree <=

N to MiNnimize maximum error.

e Chebychev Polynomials [4]

e good set of nodes for
polynomial interpolation

* Interpolation error bouna
* Use Remez Algorithm [5] to
calculate offline (e.g. by the

compiler).

e Solve linear system of
eqguations.

1, o1 \
ty = =(a+b) + =(b— a) cos

max | f(z) — p(z)|.
a=zx<b

(2/{2; lﬂ) k=1,....n.

n
1 b—a
max
2n—1nl 2 £€ja,b)

| A\

|£(2) = Paca(2)] EARIGIE

bo + b1Zi + ... + bpa” + (=1)'E = f(a:)

Absolute error

e Qur specific optimization:
e Sine is odd function, can use odd polynomials to achieve
better approximation with the similar computation.
e (Can trade off error bound with faster Remez runtime.

2 - yl = sin(x);
=)= y2 = =1.047e-1 + x * 1.749 + X."™2 *x -8.191e-1 + x.”3 * 8.691le-2 + x."4 *x -3.390e-156;
4 - y3 = X % 9.886e-1 + x.”3 x -1.605e-1 + x.”™5 % 7.410e-3 + x.”7 x -1.396e-4 + x.”9 x 9.846e-7;
0.1 Errors between sin(x) and Chebychev Polynomials ' sin(x) and Chebychev Polynomials
- Reg. poly. |
Odd poly. | 4 gg:)r ly
' 0.8 1 Oad poly
0.1; !
06}
0.08 04
0.06 H ‘ | | | | | oH
0.2
0.04

04}

0.6 |
0.02

Wall clock time (s)

—xperiments with GPGPU-SIim and GPUWattch

. Comparisons * Benchmark: Parboil, MRI-Q [6].

o HW * Result of Intrinsic Approx
* Intrinsic Approx e b5.5x speedup over Cuda-lib Precise
* Intrinsic Precise * 1.2x speedup over Intrinsic Precise.
« SW e Power consumption from 185% in
* Cuda-lib Precise Intrinsic Precise to 125% compared
* Cuda-lib Approx (missing) to Cuda-lib Precise.
Simulation Time Total Power
20000 200 B Min

Bl Avg
Max

15000 150

100

"l Jdl

intrinsic approx intrinsic precise cuda-lib precise intrinsic approx intrinsic precise cuda-lib precise

10000

Watts

5000

0

Reference

. https://homes.cs.washington.edu/~luisceze/ceze-approx-overview.pdf

. Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, Tor M. Aamodt, Analyzing
CUDA Workloads Using a Detailed GPU Simulator, in IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Boston, MA,April 19-21, 2009.

. http://www.nvidia.com/content/pdf/fermi white papers/p.glaskowsky nvidia's fermi-
the first complete gpu_architecture.pdf

. https://en.wikipedia.org/wiki/Chebyshev nodes

. https://en.wikipedia.org/wiki/Remez_algorithm

. John A. Stratton, Christopher Rodrigues, |-Jui Sung, Nady Obeid,vLi-Wen Chang, Nasser
Anssari, Geng Daniel Liu, Wen-mei W. Hwu. IMPACT Technical Report, IMPACT-12-01,

University of lllinois, at Urbana-Champaign, March 2012

https://homes.cs.washington.edu/~luisceze/ceze-approx-overview.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/p.glaskowsky_nvidia's_fermi-the_first_complete_gpu_architecture.pdf
https://en.wikipedia.org/wiki/Chebyshev_nodes
https://en.wikipedia.org/wiki/Remez_algorithm

